Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: K. Halupczok x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

We show that for every fixed A > 0 and θ > 0 there is a ϑ = ϑ(A, θ) > 0 with the following property. Let n be odd and sufficiently large, and let Q 1 = Q 2:= n 1/2(log n)ϑ and Q 3:= (log n) θ . Then for all q 3Q 3, all reduced residues a 3 mod q 3, almost all q 2Q 2, all admissible residues a 2 mod q 2, almost all q 1Q 1 and all admissible residues a 1 mod q 1, there exists a representation n = p 1 + p 2 + p 3 with primes p i a i (q i ), i = 1, 2, 3.

Restricted access