Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: K. Kaur x
  • Refine by Access: All Content x
Clear All Modify Search

Thirty maize genotypes were characterized for their nutritional, antinutritional and nutraceutical traits for identification of elite germplasm rich in beneficial characteristics. Starch, proteins, lipids, tryptophan, lysine, β-carotene, condensed tannins, protease inhibitor, phytic acid, total phenols, flavonols, o-dihydroxy phenols and DPPH radical scavenging activity were determined in grains of all the genotypes. Correlation coefficient among the various parameters showed that lysine, total phenols, flavonols and o-dihydroxy phenols were negatively correlated with phytic acid content of the genotypes. This showed that the nutritional and the nutraceutical potency of genotypes, rich in lysine and phenolic compounds, is further propounded by a reduction of phytic acid content in them. On the basis of various constituents, the genotypes were divided into three groups. Group-A genotypes had high to moderate levels of both nutritional and nutraceutical traits. Group-B included those genotypes that exhibited high to moderate levels of either nutritional or nutraceutical traits. Group-C was constituted of genotypes that had lower levels of both nutritional and nutraceutical traits. Agglomerative hierarchical clustering showed that the D subcluster of MC-2 was chiefly comprised of genotypes that had high to moderate levels of both nutritional and nutraceutical traits. It may be concluded that CML134, CML266, TOO14601, LM11, CML264, CML321, SE563, LM10, LM18, LM14 and CML32 were nutritionally rich nutraceutical genotypes having low antinutrient potency.

Restricted access

Abstract  

The - sum peak method based on the phenomenon of perturbed angular correlation has been applied to see the effect of chemical environment on the directional correlation coefficients of various cascades and to check the suitability of160Tb as a probe. No change in sum peak intensity ratios for different pH and gelatin concentration values have been seen.

Restricted access

Abstract  

Thermal decomposition of some hydroxy iron(III) carboxylates, i.e., iron(III) lactate, Fe(CH3CHOHCOO)3, iron(III) tartrate, Fe2(C4H4O6)3 and iron(III) citrate, Fe(C6H5O7) · 5H2O has been studied in static air atmosphere in the temperature range 298–773 K employing Mössbauer, infrared spectroscopies and themogravimetric methods. The compounds directly decompose to -Fe2O3 without undergoing reduction to iron(II) intermediates. An increase in particle size of -Fe2O3 has been observed with increasing decomposition temperature. The thermal stability follows the sequence: iron(III) tartrate > iron(III)citrate > iron(III)lactate.

Restricted access

Abstract  

Thermal analysis of some transition metal ferrimaleate precursors, M3[Fe(mal)3]2·xH2O (M=Mn, Co, Ni, Cu) has been studied in static air atmosphere from ambient to 600°C. Various physico-chemical techniques, i.e. TG, DTG, DTA, XRD, IR, Mössbauer spectrometry, have been employed to characterize both the intermediates and final products. After dehydration the anhydrous precursors undergo decomposition to yield an iron(II) intermediate, M[FeII(mal)2] (M=Mn, Co, Ni, Cu) in the temperature range 160-275°C. A subsequent oxidative decomposition of iron(II) species leads to the formation of -Fe2O3 and MO in the successive stages. Finally a solid-state reaction occurs between the oxides above 400°C resulting in the formation of transition metal ferrites, MFe2O4. The ferrites have been obtained at much lower temperature and in less time than in the conventional ceramic method.

Restricted access

Summary  

The thermal decomposition of manganese tris(malonato)ferrate(III) hexahydrate, Mn3[Fe(CH2C2O4)3]2 . 6H2O has been investigated from ambient temperature to 600 °C in static air atmosphere using various physico-chemical techniques, i.e., simultaneous TG-DTG-DSC, XRD, Mössbauer and IR spectroscopic techniques. Nano-particles of manganese ferrite, MnFe2O4, have been obtained as a result of solid-state reaction between a-Fe2O3 and MnO (intermediate species formed during thermolysis) at a temperature much lower than that for ceramic method. SEM analysis of final thermolysis product reveals the formation of monodisperse manganese ferrite nanoparticles with an average particle size of 35 nm. Magnetic studies show that these particles have a saturation magnetization of 1861G and Curie temperature of 300 °C. Lower magnitude of these parameters as compared to the bulk values is attributed to their smaller particle size.

Restricted access

Abstract

Thermal behavior of various synthesized transition metal surfactant complexes of the type [M(CH3COO)4]2−[C12H25NH3 +]2 where M: Cu(II), Ni(II), Co(II) has been investigated using Thermogravimetric Analysis (TGA). It was found that pyrolytic decomposition occurs with melting in metal complexes, and that metal oxides remain as final products. The activation energy order obtained, E Cu > E Ni > E Co, could be explained on the basis of size of transition metal ion and metal ligand bond strength. In the course of our investigation on the decomposition of complexes, we carried out a comparative study of different measurement and calculation procedures for the thermal decomposition. A critical examination was made of the kinetic parameters of non-isothermal thermoanalytic rate measurement by means of several methods such as Coats–Redfern (CR), Horowitz–Metzger (HM), van Krevelen (vK), Madhusudanan–Krishnan–Ninan (MKN), and Wanjun–Yuwen–Hen–Cunxin (WYHC). The most appropriate method among these was determined for each decomposition step according to the least-squares linear regression. It was found that the results obtained using CR method differ considerably from HM method, as the former method involves a lot of approximations and is not much reliable. The application of thermoanalytic techniques to the investigation of rate processes has also been discussed.

Restricted access

ADP-glucose pyrophosphorylase (AGPase) activity in the developing grains of two contrasting wheat cultivars WH730 (thermo-tolerant) and UP2565 (thermo-sensitive) was determined in relation to their allosteric effectors and grain growth. The developing grains (35 days after anthesis) were excised from the middle portion of spikes of wheat genotypes subjected to high temperature, drought and their combination at booting, post-anthesis and booting+post-anthesis. The impact of stress treatments was studied by measuring starch content and yield attributes in relation to AGPase activity. AGPase, a key enzyme for starch synthesis, is allosterically activated by 3-phosphoglyceric acid (3-PGA) and inhibited by inorganic phosphate (Pi). Sensitivity of AGPase towards individual and combined high temperature and drought has not been adequately investigated, therefore the present study analyzed AGPase activity, its sensitivity to allosteric effectors under influence of high temperature, drought in order to elucidate the relationship of AGPase with starch accumulation and grain growth. Significant difference in behavior of the enzyme and its allosteric effectors were observed between the two cultivars under high temperature and/or drought. AGPase activity was substantially decreased by high temperature, drought and was found to be positively correlated with the 3-PGA, starch accumulation and yield attributes, while negatively correlated with Pi content. The results showed that effects of high temperature and drought were additive and more severe at booting+post-anthesis stage. Such studies might help in understanding the control mechanisms associated with the pathway of starch biosynthesis and thus provide chemical means to manipulate starch content vis-à-vis grain yield under heat and drought stress.

Restricted access

A new, rapid, and specific reversed phase high-performance liquid chromatographic (RP-HPLC) method involving precolumn derivatization with benzoyl chloride was developed and validated for the estimation of γ-aminobutyric acid (GABA) in rat brain tissue preparations. The derivatization product of GABA was identified by melting point, infrared, and proton nuclear magnetic resonance (1H NMR) spectroscopy to be n-benzoyl GABA. Various parameters which influenced derivatization and elusion were optimized. The chromatographic system consisted of C-18 column with ultraviolet (UV)—photodiode array detection ranging from 210 to 400 nm. Elution with an isocratic mobile phase consisting of 0.025 M disodium hydrogen phosphate buffer—methanol (65:35, v/v; pH 6) at a flow rate of 1 mL min−1 yielded sharp and specific peak of n-benzoyl GABA within 7 min. The method was validated with respect to the linearity, accuracy, precision, sensitivity, selectivity, and stability, wherein the benzoyl derivative of GABA showed stability for 2 months. The lower limit of detection was 0.5 nmol L−1. This novel derivatization procedure for the estimation of GABA with benzoyl chloride was also applied for rat brain tissue preparations that gave highly specific peak and good component recovery. The results show that the method for the determination of GABA by benzoylation using RP-HPLC has good linearity, accuracy, precision, sensitivity, and specificity and is simple and economical to perform.

Open access

8-hydroxyquinoline (oxine) and uranyl acetate react in the solid state in 1∶3 stoichiometry to give UO2(C9H6NO)2·C9H6NOH. This reaction is diffusion controlled with an activation energy of 44.4 kJ mol−1. The reaction occurs by the surface migration of 8-hydroxyquinoline, which penetrates the product lattice to react with uranyl acetate. The isothermal decomposition of the solution phase product UO2Q2·HQ (Q=C9H6NO) obeys the Prout-Tompkins equation with an energy of activation of 53.3 kJ mol−1.

Restricted access

Abstract

Effect of microwave drying on milling, cooking, and microstructure characteristic of paddy rice in comparison to hot air drying was assessed in the present study. Results revealed that modified microwave drying significantly (P < 0.05) affected the milling quality of paddy. Raw paddy had head rice recovery of 49.63%, while after microwave drying, the head rice recovery increased by 6.73% in comparison to hot air drying. Microwave drying brought significant changes in the colour characteristic of rice as it had total colour change of 13.50 in comparison to 10.93 by hot air drying. Cooking time and water uptake ratio after microwave drying increased to 31.46 min and 3.16%, in comparison to 27.05 min and 2.65% for hot air dried samples, respectively. Scanning Electron Microscope images revealed that both hot air and microwave dried rice had a coarse surface and large starch particles, while starch structure was more damaged in hot air drying, however, agglomeration of protein-starch matrix was more uniform in microwave dried samples due to modification of the microwave applicator that prevented thermal decomposition. It was recommended that paddy may be dried using a modified microwave applicator with a shorter duration and a better quality.

Restricted access