Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: K. Kolomaznik x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Hydrolysates from chromed leather waste obtained in powdered form on an industrial scale by using biotechnical methods were analysed by TG an DSC techniques. Besides about 9% (mass/mass) of moisture, around 1% (mass/mass) of cyclohexylamine was found in the pulverized hydrolysates. Calorimetric measurement of the reaction heats of the reactions of the hydrolysates with commercially available aldehydes indicates that their reactivity decreases in the sequenceglutardialdehyde>>methylglyoxal≈acetaldehyde>>glyoxal>formaldehyde.

Restricted access

Abstract  

Differential scanning calorimetry was employed to investigate the reaction of diglycidyl ethers of bisphenol A (DGEBA) of mean molecular mass 348–480 Da, with collagen hydrolysate of chrome-tanned leather waste in a solvent-free environment. The reaction leads to biodegradable polymers that might facilitate recycling of plastic parts in products of the automotive and/or aeronautics industry provided with protective films on this basis. The reaction proceeds in a temperature interval of 205–220°C, at temperatures approx. 30–40°C below temperature of thermal degradation of collagen hydrolysate. The found value of reaction enthalpy, 519.19 J g−1 (= 101.24 kJ mol−1 of epoxide groups) corresponds with currently found enthalpy values of the reaction of oxirane ring with amino groups. Reaction heat depends on the composition of reaction mixture (or on mass fraction of diglycidyl ethers in the reaction mixture); proving the dependence of kinetic parameters of the reaction (Arrhenius pre-exponential factor A (min−1) and activation energy E a (kJ mol−1)) did not succeed. Obtained values of kinetic parameters are on a level corresponding to the assumption that reaction kinetics is determined by diffusion.

Restricted access

Abstract  

Condensation of dimethylol-urea (DMU) mixed with urea (U) and collagen hydrolysate (H), obtained through enzymatic hydrolysis of chrome-tanned leather waste, without added acid curing agents in the solid phase was studied through DSC and TG techniques in a temperature interval up to 220°C. Among both techniques TG proved be more useful.While the DMU+U mix produced methylene-oxide (-CH2-O-CH2-) and methylene (-CH2-) bridges at a ratio of approx. 1:1, urea substituted for collagen hydrolysate increased the proportion of more stable methylene bridges to methylene-oxide bridges to a ratio of approx. 2:1. Methylene-oxide bridges are considered to be the main potential sources of formaldehyde emissions from cured urea-formaldehyde type adhesives, and thus the use of collagen hydrolysate in preparation of urea-formaldehyde adhesive types is a suitable way how to make such adhesives more environmental friendly.

Restricted access

Abstract  

Hydrogels of collagen hydrolysate (H) of mean M w 15–30 kDa obtained from waste collagen from meat casings manufacture, cross-linked with 15% (based on H) polymeric dialdehyde starch (DAS), have a marked tendency to ageing, which shows in hydrogel gradually increasing rigidity and decreasing thermo-reversibility. Methods of thermal analysis (DSC, TG) proved that ageing of hydrogels is not related with a non-equilibrium state of the cross-linking reaction but is rather given by increasing density of inter-chain hydrogen bonds between polypeptide segments of H. Plasticizing effect of DAS on H is not too pronounced but the difference between glass transition temperature of dry xerogel T g = 189.5±2.5°C and temperature of starting degradation (DAS component) 241.4±12.7°C offers certain space for processing these xerogels into biodegradable (edible) packaging material by usual plastics technologies. Films obtained from the reaction mixture by casting and drying at room temperature after thermal processing (105°C for 4 h) dissolve at room temperature only after 350 h. This effect can be employed for time-controlled releasing of active substances from such biodegradable (edible) packages.

Restricted access

Abstract  

The study deals with the effect of chemical and physical modifications on thermal properties and solubility properties of films based on amaranth flour starch–protein hydrolysate. Biodegradable and edible films were prepared by casting a 25% (w/w) solution of hydrolysate containing 20% glycerol and various additions of dialdehyde starch (0, 1 and 5%). After thermal exposure of films at 65 and 95 °C (for 6 and 48 h), thermal properties of films were studied employing differential scanning calorimetry and thermogravimetric analysis. Film solubility tests were performed in an aqueous environment at 25 °C. Chemical and physical modifications of films markedly affect their thermal properties and solubility.

Restricted access