Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: K. Kruppa x
  • Refine by Access: All Content x
Clear All Modify Search

The aim of the present study was to test the efficiency of gamma irradiation in inducing translocations between wheat and barley genomes using addition lines. The Martonvásári 9 kr1-Igri disomic addition set, previously produced in Martonvásár, was irradiated with gamma rays. The pattern of irradiation-induced intergenomic chromosome rearrangements was analysed in the mutagenized (M0) generation by genomic in situ hybridization (GISH). Centric fusions and a wide variety of reciprocal, terminal and interstitial translocations were frequently induced. The intergeneric translocations produced here are expected to be stabilized in later backcross progenies as a set of introgression lines carrying few but distinct rearrangements.

Restricted access

The 4H(4D) wheat/barley substitution line was crossed with the ‘Chinese Spring’ ph1b mutant genotype in order to induce wheat-barley homoeologous recombinations. F3 and F4 seeds of the 4H(4D) × ‘Chinese Spring’ ph1b mutant cross were analysed using genomic in situ hybridization, and a Robertsonian translocation was detected in monosomic form. Disomic centric fusions were selected among the self-fertilized progenies. The presence of the long arm of 4H was confirmed with SSR markers. The long arm of the 5D wheat chromosome in the Robertsonian translocation was identified using fluorescent in situ hybridization with the help of three DNA probes: pSc119.2, Afa family and pTa71. The wheat/barley centric fusion was identified as a 4HL.5DL translocation. This line exhibited supernumerary spikelet character, but the number of seeds/plant did not increase. The 4HL.5DL centric fusion line is suitable genetic material to study the expression of genes located on 4HL in a wheat genetic background.

Restricted access