Search Results
You are looking at 1 - 1 of 1 items for
- Author or Editor: K. S. Bagga x
- Refine by Access: All Content x
For an (r − 2)-edge-connected graphG (r ≥ 3) for orderp containing at mostk edge cut sets of cardinalityr − 2 and for an integerl with 0 ≤l ≤ ⌊p/2⌋, it is shown that (1) ifp is even, 0 ≤k ≤ r(l + 1) − 1, and
\documentclass{aastex}
\usepackage{amsbsy}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{bm}
\usepackage{mathrsfs}
\usepackage{pifont}
\usepackage{stmaryrd}
\usepackage{textcomp}
\usepackage{upgreek}
\usepackage{portland,xspace}
\usepackage{amsmath,amsxtra}
\pagestyle{empty}
\DeclareMathSizes{10}{9}{7}{6}
\begin{document}
$$\mathop \sum \limits_{v \in V(G)} |\deg _G v - r|< r(2 + 2l) - 2k$$
\end{document}
, then the edge independence numberβ
1
(G) is at least (p − 2l)/2, and (2) ifp is odd, The sharpness of these results is discussed.