Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: K. Sainath x
Clear All Modify Search

The objective of the current research is to understand the degradation behavior of avanafil under different stress conditions and to develop a stability-indicating high-performance liquid chromatography (HPLC) method for simultaneous determination of degradants observed during degradation. Avanafil tablets were exposed to acid, base, water, oxidative, thermal, and photolytic degradation conditions. In acid, oxidative, thermal, and humidity degradation, significant degradation was observed. All the degradants observed during degradation were separated from known impurities of avanafil by using reverse-phase (RP)-HPLC. Mobile phase A, 0.1% trifluoro acetic acid and triethylamine in water, and mobile phase B, water and acetonitrile in the ratio of 20:80 (v/v), were used at a flow rate of 1.2 mL/min in gradient elution mode. Separation was achieved by using Inertsil ODS 3 column (3 μm, 4.6 mm × 250 mm) at 45 °C. Peak responses were recorded at 245 nm. Method capability for detecting and quantifying the degradants, which can form during stability, was proved by demonstrating the peak purity of avanafil peak in all the stressed samples. Mass balance was established by performing the assay of stressed sample against reference standard. Mass balance was found >97% for all the stress conditions. The developed analytical method was validated as per International Conference on Harmonization (ICH) guidelines. The method was found specific, linear, accurate, precise, rugged, and robust.

Open access