Search Results

You are looking at 1 - 10 of 23 items for

  • Author or Editor: K. Yang x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

This work discusses thermal behavior of Ni/MH battery with experimental methods. The present work not only provides a new way to get more exactly parameters and thermal model, but also concentrates on thermal behavior in discharging period. With heat generation rate gained by experiments with microcalorimeter, heat transport equations are set up and solved. The solutions are compared with experiment results and used to understand the reactions inside the battery. Experiments with microcalorimeter provide more reliable data to create precise thermal model.

Restricted access

Abstract  

Measurement of 3H, 14C, 32P, 35S, 125I, and 131I in radioisotope (RI) waste materials such as the vials, pipette tips, tubes, syringes, and paper generated from the industrial, medical, educational, and research organizations were conducted by a wet oxidation method. Counts were obtained by a liquid scintillation counter for 3H, 14C, and 32P; a gas proportional counter for 35S; a low energy photon spectroscopy for 125I; and an HPGe detector for 131I. After the treatment of approximately 20 g of the sample, the counting value was determined to obtain a minimum detectable activity (MDA) of approximately 1 × 10−3 ~ 5 × 10−2 Bq/g. The specific activities of shor-half-life RIs (32P, 35S, 125I, and 131I) were not detectable and/or resulted in a low value (<1 Bq/g). The waste containing 3H and 14C was observed to have the specific activities in the range of 10−2–105 and 10−2–104 Bq/g, respectively.

Restricted access

Thermal degradation of poly(vinyl butyral) (PVB) and its mixtures with alumina, mullite and silica was investigated by non-isothermal thermogravimetry in the temperature range of 323 to 1273 K. The analysis of the data was carried out using a three-dimensional diffusion model. Results showed that the kinetic parameters (activation energy and pre-exponential factor) of the PVB degradation are different for polymer alone, and ceramic/polymer composites. The overall weighted mean apparent activation energy showed an increasing reactivity in the order of PVB<alumina+PVB<mullite+PVB<silica+PVB. This shows that the acidic and basic surface characteristics of the ceramics promote the thermal degradation of PVB and, the more acidic silica affects the degradation more than mullite and alumina. The effect of pellet compression pressure in the range of 4000 to 8000 psig is also investigated.

Restricted access

Abstract  

The extraction of Am(III) and Eu(III) using a γ-pre-irradiated N,N′-dimethyl-N,N′-dibutyltetradecyl malonamide (DMDBTDMA) modified with N,N′-dihexyloctanamide (DHOA) in n-dodecane (NDD) at 4.5M HNO3 has been studied as a function of the absorbed dose up to 2×106 Gray. The distribution ratios of Am(III) and Eu(III) were almost constant until a dose of 1×105 Gray and then they decreased gradually up to a dose of 2×106 Gray. The decrease of the distribution ratios of Am(III) and Eu(III) are due to the decreasing concentration of the DMDBTDMA by a γ-pre-irradiation and these results were supported by a determination of the DMDBTDMA concentration with a gas chromatography method. The distribution ratios of Am(III), Eu(III), Ce, Nd and Y with γ-pre-irradiated (DMDBTDMA-DHOA)/NDD have also been studied as a function of the nitric acid concentration and the extraction temperature.

Restricted access

Naturalization is the introduction and establishment of a nonnative species with sustainable populations in a novel environment. The success of nonnative species may be influenced by their relatedness to the native flora. Darwin proposed that if a nonnative plant species is introduced into an environment without native congeners, the nonnative species will have a greater chance of becoming naturalized. To test Darwin’s naturalization hypothesis, we compiled a Kentucky plant database consisting of 821 vascular plant species and subsequently selected species traits and distribution information to determine the effect of congeneric species and traits on the probability of successful naturalization and invasion. The predictors used include reproductive traits, growth form, abundance, habitat type, native congeners, and biogeographical origin. We fit three sets of generalized linear mixed models (GLMMs) with a binomial family and a logit link. Backward selection based on minimizing the Akaike Information Criterion (AIC) was used in the analyses. Our results from these three sets of models clearly indicate that the validity of Darwin’s hypothesis is invasion stage dependent. More specific, the naturalized and invasive models (predicting the probability of being naturalized and invasive respectively) did not support Darwin’s naturalization hypothesis. The number of native congeners had no effect on the likelihood that a particular species would naturalize and become invasive. Our results suggest that Darwin’s naturalization hypothesis is more relevant during the early stage of establishment as demonstrated by the native model (predicting the probability of being native) and it becomes irrelevant during the late stages of invasion as indicated by the naturalized and invasive models. Thus, it can be generalized that biotic interactions, especially competition, is a critical determinant of initial success for nonnative species in the recipient communities. Once established, the fate of non-native species during the late stages of invasion may be more related to other factors such as biogeographic origin and habitat conditions. Furthermore, we found reproductive traits such as flowering phenology and flower type are associated with invasion success. We also recognized contrasting traits between native and nonnative species, indicating niche differentiation between these two groups of species. Niche overlapping was found as well among species regardless of the status of being native or otherwise. Our study provides a novel approach to advance the understanding of phylogenetic relatedness between nonnative species and native flora by integrating traits and niche concepts at the regional scale.

Restricted access

Abstract  

Phase transition behavior of polyesters derived from 2,7-phenanthrene dicarbonic acid diethylester and alkanediols with even methylene carbon number was investigated by the simultaneous DSC-XRD method. The smectic A phase was observed on cooling from the molten state. The transition entropy from the isotropic state to the smectic A phase was about 9.0 J mol-1 K-1, which depended on the methylene carbon number. The linear expansion coefficients, based on the (001) spacing of the crystalline phase at room temperature, were 1.310-4 K-1 (crystalline phase), 5.710-4 K-1 (crystallization region), 1.710-3 K-1 (smectic A phase) during cooling, and 1.510-4 K-1 (crystalline phase), and 1.010-3K-1(melting region) on heating.

Restricted access

Abstract  

The extraction of cobalt by Winsor II microemulsion system was studied. In the bis (2-ethylhexyl) sulfosuccinate sodium salt (AOT)/n-pentanol/n-heptane/NaCl system, AOT was used as a anionic surfactant to form microemulsion in n-heptane, n-pentanol was injected in the microemulsion as a cosurfactant. Co(II) was found to be extracted into the microemulsion phase due to ion pair formation such as Co2+(R–SO3 )Cl. The influence of different parameters such as the volume ratio of aqueous phase to microemulsion, surfactant concentration, pH of the feed solutions, cosurfactant concentration as well as temperature on the extraction yield (E%) were investigated. The results showed that it was possible to extract 95% of cobalt by the AOT Winsor II microemulsion.

Restricted access

Abstract  

This study was carried out to investigate the characteristics of an oxidative-dissolution of fission products (FP) when uranium (U) is dissolved in a Na2CO3–H2O2 carbonate solution. Simulated FP-oxides which contained 12 components were added to the solution to examine their dissolution behaviors. It was found that H2O2 was an effective oxidant to minimize the dissolution of FP. For the 0.5 M Na2CO3–0.5 M H2O2 solution, such elements as Re, Te, Cs, and MoO2 were dissolved with yields of 98 ± 2%, 98 ± 2%, 93 ± 2%, and 26 ± 3%, respectively, for 2 h. Among these components, Re, Te, and Cs were completely dissolved within 10–20 min without regard to the concentrations of Na2CO3, and H2O2 due to their high solubility in the carbonate solution with and without H2O2. However, MoO2 was very slowly dissolved and its yield was 29 ± 3% for 4 h. The pH of the dissolved solution revealed the greatest influence on the dissolution yields of the FP, exhibiting the most effective pH condition in the range of 10–12 in order to create a considerable suppression of the co-dissolution of FP during the oxidative-dissolution of U.

Restricted access

Abstract  

Neutron capture cross sections on 63Cu and 186W were measured by fast neutron activation method at neutron energies from 1 to 2 MeV. Monoenergetic fast neutrons were produced by 3H(p,n)3He reaction. Neutron energy spread by target thickness, which was assumed to be the main factor of neutron energy spread, was estimated to be 1.5% at neutron energy of 2.077 MeV. Neutron capture cross sections on 63Cu and 186W were calculated by reference comparison method on those of 197Au(n,γ). Not only statistical errors of gamma-counts from samples but also systematic errors in the counting efficiency for HP Ge detector and the uncertainty of areal density of samples were considered in calculating neutron capture cross section. Estimated neutron capture cross sections on 63Cu and 186W were also compared with ENDF-6 data.

Restricted access