Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: K.G. Mandal x
Clear All Modify Search
Cereal Research Communications
Authors: K.G. Mandal, K. Kannan, A.K. Thakur, D.K. Kundu, P.S. Brahmanand and A. Kumar

Three-year (2007/2008–2009/2010) field experiment was conducted at the Directorate of Water Management Research Farm under Deras command in Odisha, India to assess the crop yield, irrigation water use efficiency (WUE), sustainable yield index (SYI), land utilization index (LUI) and changes in soil organic carbon (SOC) for dominant rice systems, viz. rice-maize-rice, rice-cowpea-rice, rice-sunflower-rice, rice-tomato-okra and rice-fallow-rice. Results revealed that crop yield, in terms of total system productivity (TSP) increased by 273, 113, 106 and 58% in rice-tomato-okra, rice-sunflower-rice, rice-maize-rice and rice-cowpea-rice, respectively, when compared to rice-fallow-rice. Irrigation WUE was 49–414% greater in rice-based diversified systems than the existing rice-fallow-rice (2.98 kg ha−1 mm−1). The SYI ranged from 0.65 to 0.75 indicating greater sustainability of the systems. Three crops in a sequence resulted in greater LUI and production efficiency compared to rice-fallow-rice. The gross economic return and benefit-cost ratio was in the order: rice-tomato-okra > rice-maize-rice > rice-sunflower-rice > rice-cowpea-rice > rice-fallow-rice. The SOC storage ranged from 40.55 Mg ha−1 in rice-fallow-rice to 46.23 Mg ha−1 in rice-maize-rice system. The other systems had also very close values of SOC storage with the rice-maize-rice system; there was a positive change of SOC (7.20 to 12.52 Mg ha−1) for every system, with highest in rice-maize-rice system and the lowest in rice-fallow-rice. It is concluded that the appropriate rice-based system would be rice-tomato-okra followed by rice-maize-rice, rice-sunflower-rice and rice-cowpea-rice. Rice-fallow-rice is not advisable because of its lower productivity, lower LUI and economic return.

Restricted access

Clay from the Nagrotta area of Jammu (J & K State, India) was calcined at various temperatures. The products were analysed by X-ray diffraction. The mode of loss of hydroxyl group from the structure with respect to temperature is discussed. The results were supplemented by differential thermal analysis. The calcined products were subjected to lime reactivity tests and the data obtained were correlated with those of the above study to investigate the pozzolanic activity at various temperatures.

Restricted access

Abstract

A thermodynamic analogy allows bibliometric research assessment of information production processes to be based on a scalar indicator which is an energy-like term called exergy. Derived from standard indicators like impact, citations and number of papers, the exergy indicator X is a multiplicative product of quality and quantity of a scientist's or group's performance using available bibliometric information. Thus, given the bibliometric sequences of leading research agencies and institutions, research performance can be displayed as trajectories on a two-dimensional map as time progresses. In this paper, we track the performance of several of the leading players contributing to academic scientific research in India.

Restricted access
Cereal Research Communications
Authors: S. L. Krishnamurthy, S. K. Sharma, D. K. Sharma, P. C. Sharma, Y. P. Singh, V. K. Mishra, D. Burman, B. Maji, B. K. Bandyopadhyay, S. Mandal, S. K. Sarangi, R. K. Gautam, P. K. Singh, K. K. Manohara, B. C. Marandi, D. P. Singh, G. Padmavathi, P. B. Vanve, K. D. Patil, S. Thirumeni, O. P. Verma, A. H. Khan, S. Tiwari, M. Shakila, A. M. Ismail, G. B. Gregorio and R. K. Singh

Genotype × environment (G × E) interaction effects are of special interest for identifying the most suitable genotypes with respect to target environments, representative locations and other specific stresses. Twenty-two advanced breeding lines contributed by the national partners of the Salinity Tolerance Breeding Network (STBN) along with four checks were evaluated across 12 different salt affected sites comprising five coastal saline and seven alkaline environments in India. The study was conducted to assess the G × E interaction and stability of advanced breeding lines for yield and yield components using additive main effects and multiplicative interaction (AMMI) model. In the AMMI1 biplot, there were two mega-environments (ME) includes ME-A as CARI, KARAIKAL, TRICHY and NDUAT with winning genotype CSR 2K 262; and ME-B as KARSO, LUCKN, KARSA, GOA, CRRI, DRR, BIHAR and PANVE with winning genotypes CSR 36. Genotypes CSR 2K 262, CSR 27, NDRK 11-4, NDRK 11-3, NDRK 11-2, CSR 2K 255 and PNL 1-1-1-6-7-1 were identified as specifically adapted to favorable locations. The stability and adaptability of AMMI indicated that the best yielding genotypes were CSR 2K 262 for both coastal saline and alkaline environments and CSR 36 for alkaline environment. CARI and PANVEL were found as the most discernible environments for genotypic performance because of the greatest GE interaction. The genotype CSR 36 is specifically adapted to coastal saline environments GOA, KARSO, DRR, CRRI and BIHAR and while genotype CSR 2K 262 adapted to alkaline environments LUCKN, NDUAT, TRICH and KARAI. Use of most adapted lines could be used directly as varieties. Using them as donors for wide or specific adaptability with selection in the target environment offers the best opportunity for widening the genetic base of coastal salinity and alkalinity stress tolerance and development of adapted genotypes. Highly stable genotypes can improve the rice productivity in salt-affected areas and ensure livelihood of the resource poor farming communities.

Restricted access