Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: KT Mattocks x
Clear All Modify Search

The purpose of this study was to compare the acute muscular response with resistance exercise between the following conditions [labeled (% one-repetition maximum/% arterial occlusion pressure)]: high-load (70/0), very low-load (15/0), very low-load with moderate (15/40), and high (15/80) blood flow restriction pressures. Twenty-three participants completed four sets of unilateral knee extension to failure (up to 90 repetitions) with each condition, one condition per leg, each day. Muscle thickness and maximal voluntary contraction (MVC) were measured before (Pre), immediately after (Post-0), and 15 min after (Post-15) exercise and electromyography (EMG) amplitude during exercise. Pre to Post-0 muscle thickness changes in cm [95% CI] were greater with 15/40 [0.57 (0.41, 0.73)] and 15/80 [0.49 (0.35, 0.62)] compared to 70/0 [0.33 (0.25, 0.40)]. Pre to Post-0 MVC changes in Nm [95% CI] were higher with 15/40 [−127.0 (−162.1, −91.9)] and 15/80 [−133.6 (−162.8, −104.4)] compared to 70/0 [−48.4 (−70.1, −26.6)] and 15/0 [−98.4 (−121.9, −74.9)], which were also different. Over the first three repetitions, EMG increased across sets, whereas in the last three repetitions it did not. EMG was also different between conditions and was generally greater during 70/0. Repetitions decreased across sets reaching the lowest for 70/0, and for very low loads decreased with increased pressure. In trained participants exercising to failure, lower load and the application of restriction pressure augment changes in muscle thickness and torque. The EMG amplitude was augmented by load. Training studies should compare these conditions, as the results herein suggest some muscular adaptations may differ.

Restricted access
Authors: SJ Dankel, MB Jessee, SL Buckner, JG Mouser, KT Mattocks and JP Loenneke

The application of blood flow restriction during low-load resistance exercise has been shown to induce muscle growth with high or low restriction pressures, however, loads lower than 20% one-repetition maximum (1RM) remain unexplored. Fourteen trained individuals completed six elbow flexion protocols involving three different loads (10%, 15%, and 20% 1RM) each of which was performed with either a low (40% arterial occlusion) or high (80% arterial occlusion) pressure. Pre- and post-measurements of surface electromyography (sEMG), isometric torque, and muscle thickness were analyzed. An interaction was present for torque (p < 0.001) and muscle thickness (p < 0.001) illustrating that all increases in pressure and/or load resulted in a greater fatigue and muscle thickness. There was no interaction for sEMG (p = 0.832); however, there were main effects of condition (p = 0.002) and time (p = 0.019) illustrating greater sEMG in the 20% 1RM conditions. Higher blood flow restriction pressures may be more beneficial for muscle growth when very low loads are used.

Restricted access
Authors: SL Buckner, SJ Dankel, KT Mattocks, MB Jessee, JG Mouser and JP Loenneke


A training program consisting of only one-repetition maximum (1RM) training results in similar strength adaptations as traditional resistance exercise. However, little is known regarding the affective or behavioral responses to this type of training.


To examine the affective and behavioral response to either a traditional resistance exercise program or a biweekly 1RM-training program.


Participants were trained for 8 weeks (2× per week). The HYPER group completed four sets of 8–12 repetitions; the 1RM group (TEST) worked up to a single maximal repetition.


The TEST group felt more revitalized and had an increase in positive engagement during their first visit, whereas the HYPER group showed an increase in feelings of physical exhaustion during their first and last visits. There were no pre to post differences for the change in behavior or self-efficacy between groups.


1RM training appears to elicit a more favorable affective response, compared with HYPER training, which may ultimately improve adherence to resistance-type exercise.

Restricted access
Authors: SJ Dankel, SL Buckner, BR Counts, MB Jessee, JG Mouser, KT Mattocks, GC Laurentino, T Abe and JP Loenneke

The purpose of this study was to determine acute physiological and perceptual responses to two commonly implemented blood flow restriction protocols. Using a within-subject design, 15 participants (age ∼25) performed four sets of unilateral elbow flexion with each arm. One arm exercised using a 3-cm elastic cuff inflated to 160 mmHg, whereas the other arm exercised using a 5-cm nylon cuff inflated to 40% of the individual’s arterial occlusion pressure. While both protocols elicited increases in acute muscle thickness [pre: 4.5 (0.2) cm, post: 5.0 (0.2) cm; p < 0.001] and electromyography amplitude [first 3 reps: 55 () %MVC; last 3 reps: 87 () %MVC], there were no differences between conditions. Both protocols produced decreases in post-exercise strength (pre: 70 Nm, post: 51 Nm; p < 0.001) with no difference between conditions. The nylon protocol resulted in more repetitions during sets 2 [13 () vs. 9 (); p = 0.001] and 3 [10 () vs. 7 (); p = 0.05], while producing lower levels of discomfort following each set (average 3 vs. 4; p < 0.05). In conclusion, both protocols produced similar acute responses thought to be important for promoting muscle growth. However, the use of arbitrary pressures may place some individuals under complete arterial occlusion which may increase the potential risk of an adverse event.

Restricted access