Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Karl-Friedrich Klein x
  • All content x
Clear All Modify Search

In-situ densitometry for qualitative or quantitative purposes is a key step in thin-layer chromatography (TLC). It is a simple means of quantification by measurement of the optical density of the separated spots directly on the plate. A new scanner has been developed which is capable of measuring TLC or HPTLC (high-performance thin-layer chromatography) plates simultaneously at different wavelengths without damaging the plate surface. Fiber optics and special fiber interfaces are used in combination with a diode-array detector. With this new scanner sophisticated plate evaluation is now possible, which enables use of chemometric methods in HPTLC. Different regression models have been introduced which enable appropriate evaluation of all analytical questions. Fluorescent measurements are possible without filters or special lamps and signal-to-noise ratios can be improved by wavelength bundling. Because of the richly structured spectra obtained from PAH, diode-array HPTLC enables quantification of all 16 EPA PAH on one track. Although the separation is incomplete all 16 compounds can be quantified by use of suitable wavelengths. All these aspects are enable substantial improvement of in-situ quantitative densitometric analysis.

Restricted access

A new diode-array scanner in combination with a computer-controlled application system meets all the demands of modern HPTLC measurement. Automatic application, simultaneous measurements at different wavelengths, and different linearization models enable appropriate evaluation of all analytical questions. The theory of error propagation recommends quantification at reflectance values smaller than 0.8; this can be verified only by use of diode-array scanning. The same theory also recommends quantification by use of peak height data, because the theory predicts best precision only for peak height evaluation. Diode-array scanning with reflectance monitoring enables appropriate validation in TLC and HPTLC analysis. All these aspects result in substantial improvement of in-situ quantitative densitometric analysis, and simultaneous recording at different wavelengths opens the way for chemometric evaluation, e.g. peak purity monitoring, which improves the accuracy and reliability of HPTLC analysis.

Restricted access

We will present the first example of a two-dimensional scanned TLC-plate, measured by use of a diode-array scanner. A spatial resolution of 250 μm was achieved on plate. The system provides real 2D fluorescence and absorption spectra in the wavelength-range from 190 to 1000 nm with a spectral resolution of greater than 1 nm. A mixture of 12 sulphonamides was separated by using a cyanopropyl-coated silica gel plate (Merck, 1.16464) with the solvent mix of methyl tert-butyl ether-methanol-dichloromethane-cyclohexane-NH3 (25%) (48:2:2:1:1, v/v) in the first and with a mixture of water-acetonitrile-dioxane-ethanol (8:2:1:1, v/v) in the second direction. Both developments were carried out over a distance of 70 mm. A separation number (spot capacity) of 259 was calculated. We discussed a new formula for its calculation in 2D-TLC separations. The drawback of this method is that measuring a 2D-TLC plate needs more than 3 h measurement time.

Restricted access

HPTLC on amino plates, with simple heating of the plates for derivatization, has been used for quantification of glucosamine in nutritional supplements. On heating the plate glucosamine reacts to form a compound which strongly absorbs light between 305 and 330 nm, with weak fluorescence. The reaction product can be detected sensitively either by absorption of light or by fluorescence detection. The detection limit in absorption mode is approximately 25 ng per spot. In fluorescence mode a detection limit of 15 ng is achievable. A calibration plot for absorption detection is linear in the range 25 to 4000 ng glucosamine. The derivative formed from glucosamine by heating is stable for months, and the relative standard deviation is 1.64% for 600 ng glucosamine. The amounts of glucosamine found in nutritional supplements were in agreement with the label declarations.

Restricted access