Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: Katalin Badakné Kerti x
- Refine by Access: All Content x
Abstract
One of the most important components in spreads is the fat phase. The characteristics of the used fat determine most of the quality factors of the products such as viscosity, texture, colour, shelf life, etc. In these kinds of products, the commonly used fat is palm fat, however, in recent years it has had a bad press due to its negative environmental impact and health concerns. Therefore, the aim of our research was to develop a palm oil free hazelnut spread. We investigated the effect of replacing the fat in the fat phase with milk fat or coconut fat to the apparent viscosity, colour and texture properties of the product. According to our results the palm fat had the highest and coconut fat had the lowest viscosity. In texture analyses palm fat and milk fat showed no significant difference in hardness and in work of penetration. Coconut fat was significantly different in every texture attributes from the other samples. In the case of colour measurement all samples were significantly different. Despite the observed differences in some parameters the suitability of milk fat for hazelnut spread production should be further investigated (sensory analyses, shelf-life).
Abstract
Excessive consumption of added sugar is associated with many health problems, for example obesity, type 2 diabetes, etc. Hence there is an urgent need for the product reformulation by total replacement or partial reduction of sugar in food industry. The aim of this research was to study the effect of sugar substitution (by stevia and xylitol) on model confectionary systems. We investigated differences in the texture properties, the viscosity and thermal properties of the blends. Based on our results, the sugar substitution affects the physical properties of the measured samples. The apparent viscosity and the texture properties were changed due to the different dry matter content in the samples. In the differential scanning calorimeter (DSC) curves the different melting of the samples were expressed according to the changes in sugar content. Further work is needed in this field to follow up the discovered changes in thermal behaviour of these mixtures.
Abstract
In the experiments, the sound generated during the breaking of chocolate samples was examined. The fracture was performed by a precision penetrometer, the breaking sound was recorded. Texture index (TI) was calculated from the resulting signal. First the change of the resulting TI was monitored as a function of the samples' temperature. The sample groups of the same dark chocolate with different temperatures were completely separated from each other with statistical tool (LDA, linear discriminant analyses), but no trend was found to describe the change. Secondly, based on the TI, we could identify and classify the chocolate samples in the appropriate groups (based on cocoa content from 40 to 85%). According to linear discriminant analyses chocolates with different cocoa content were completely separated and showed a certain pattern. Based on the obtained results, it can be stated that the cocoa content of chocolate can be determined on the basis of TI obtained by acoustic method.