Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ki-Min Park x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Recovered salt can be reused in the electrorefining process and the final removed salt from uranium (U) deposits can be fed into a following U casting process to prepare ingot. Therefore, salt distillation process is very important to increase the throughput of the salt separation system due to the high U content of spent nuclear fuel and high salt fraction of U dendrites. Yields on salt recovered by a batch type vacuum distiller transfer device were processed for obtaining pure eutectic salt and U. In this study, the influence of the various temperature slopes of each zones on salt evaporation and recovery rate are discussed. From the experimental results, the optimal temperature of each zones appear at the Top Zone and Zone 1 is 850 °C, Zone 2 is 650 °C and Zone 3 is 600 °C, respectively. In these conditions, the complete evaporation of pure salt in 1.4 h occurred and the amount of recovered salt was about 99 wt%. The adhered salt in U deposits was separated by a temperature slope zone of salt distillation equipment. From the experimental results using U deposits, the amount of salt evaporation was achieved more than 99 wt% and the salt evaporation rate was about 1.16 g/min. Also, the mount of recovered salt was about 99.5 wt%.

Restricted access
Reaction Kinetics, Mechanisms and Catalysis
Authors:
Saet Byul Kim
,
Mi Ran Lee
,
Eun Duck Park
,
Sang Min Lee
,
HyoKyu Lee
,
Ki Hyun Park
, and
Myung-June Park

Abstract

A kinetic model of the homogeneous conversion of d-xylose in high temperature water (HTW) was developed. Experimental testing evaluated the effects of operating conditions on xylose conversion and furfural selectivity, with furfural yields of up to 60% observed without the use of acid catalysts. The reaction order for the decomposition of d-xylose was assumed to be above two, while the conversion of d-xylose to furfural and the degradation of furfural were first order reactions. Estimated kinetic parameters were within the range of values reported in the literature. The activation energy of furfural production showed that the ionization rate was high enough for HTW to replace acid catalysts. Simulated results from this model were in good agreement with experimental data, allowing the model to aid reactor design for the maximization of productivity.

Restricted access