Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Kurt Zimmermann x
  • Refine by Access: All Content x
Clear All Modify Search

The fever-inducing effect of lipopolysaccharides (LPS) is well known, and human blood is extremely responsive to this pyrogen. Recently, the safety of LPS-containing food supplements and probiotic drugs as immune-stimulants has been questioned, although these products are orally taken and do not reach the bloodstream undigested. The concerns are understandable, as endotoxaemia is a pathological condition, but the oral uptake of probiotic products containing LPS or Gram-negative bacteria does not pose a health risk, based on the available scientific evidence, as is reviewed here. The available methods developed to detect LPS and other pyrogens are mostly used for quality control of parentally applied therapeuticals. Their outcome varies considerably when applied to food supplements, as demonstrated in a simple comparative experiment. Products containing different Escherichia coli strains can result in vastly different results on their LPS content, depending on the method of testing. This is an inherent complication to pyrogen testing, which hampers the communication that the LPS content of food supplements is not a safety concern.

Open access

Probiotics are considered to have a beneficial impact on humans, but in some cases, administration of live microorganisms might be risky. In the present study, immunomodulatory effects of different Escherichia coli strains and their supernatants were examined under different inflammatory conditions with living and heat-inactivated strains. HT-29 cells were incubated with E. coli strains (S2-G1, S2-G3, S2-G4 and S2-G8) and their supernatants with or without stimulation with tumor necrosis factor alpha (TNF-α) or interleukin (IL)-1β. Quantification of IL-8 secretion and gene expression was performed by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR). IL-8 secretion by TNF-α- and IL-1β-stimulated cells was attenuated by all four live strains. In contrast, heat inactivation resulted in an elevated IL-8 expression and secretion in unstimulated cells and did not maintain the anti-inflammatory effect of live bacteria in cytokine-stimulated cells. The supernatant of the live S2-G3 led to an elevated IL-8 secretion in unstimulated and IL-1β-stimulated cells but not in TNF-α-stimulated cells. Live bacteria of all strains might induce an immunosuppressive effect after stimulation of HT-29 cells, whereas heat inactivation and the supernatant seem to induce an elevated immune response. These findings might have an impact depending on the indication and purpose of administration.

Open access
European Journal of Microbiology and Immunology
Authors: Trudy M. Wassenaar, Anke Zschüttig, Claudia Beimfohr, Thomas Geske, Christian Auerbach, Helen Cook, Kurt Zimmermann, and Florian Gunzer

The probiotic product Symbioflor2 (DSM 17252) is a bacterial concentrate of six different Escherichia coli genotypes, whose complete genome sequences are compared here, between each other as well as to other E. coli genomes. The genome sequences of Symbioflor2 E. coli components contained a number of virulence-associated genes. Their presence seems to be in conflict with a recorded history of safe use, and with the observed low frequency of adverse effects over a period of more than 6 years. The genome sequences were used to identify unique sequences for each component, for which strain-specific hybridization probes were designed. A colonization study was conducted whereby five volunteers were exposed to an exceptionally high single dose. The results showed that the probiotic E. coli could be detected for 3 months or longer in their stools, and this was in particular the case for those components containing higher numbers of virulence-associated genes. Adverse effects from this long-term colonization were absent. Thus, the presence of the identified virulence genes does not result in a pathogenic phenotype in the genetic background of these probiotic E. coli.

Open access