Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: László Ferenc Friedrich x
- Refine by Access: All Content x
Abstract
Blood coagulation is a process, which is initiated by certain physico-chemical effects. This process results in a change in the blood from the sol state, that is well suited for further processing, to gel state. 13 blood clotting factors take part in the cascade system of blood coagulation. Trisodium-citrate affects factor IV, the calcium, and prevents the change in blood texture. The effect of different concentrations of trisodium-citrate (0, 0.48, 2.4, 4.8, 9.6, 14.4, 19.2, 24 w/w%) on the texture of blood is investigated. Porcine blood was collected in 20 cm3 test tubes in a slaughterhouse directly before trisodium-citrate addition and was stored for one day under refrigerated conditions. The samples without trisodium-citrate coagulated and the samples with high trisodium-citrate (4–5 g) became solid as well because of the protein salting-out. The viscosity of successfully treated samples and the shear stress were measured with a rotational viscometer (Physica MCR 51, Anton-Paar) with concentric cylinders and Couette type method. The flow behavior of all samples could be described by the Herschel-Bulkley model. The yield point, the consistency index and the power of law index, which are determined by the equation of the model, showed that the samples with lower trisodium-citrate content coagulated “better” and the sample with high trisodium-citrate were most similar to Newtonian fluid. The results are trend-likes, but significant differences may be expected in the case of higher sample amount. The yield point of the sample, which contained 14.4 w/w% trisodium-citrate, was by 37.3% less than the sample containing 0.48% trisodium-citrate, and the consistency index of the sample with 3 g trisodium-citrate was by 20.5% higher than that of the sample with 0.48% trisodium-citrate. Thanks to these results a cheaper concentration and drying of porcine blood and blood fractions are available because no surplus water is added to the blood.
Abstract
Animal food, especially meat, has played an important role in the history of mankind. Different meats can be used in the production of meat products. In addition to lean meats, mechanically deboned meat (MDM) and mechanically separated meat (MSM) can also be used in meat products. However, the latter does not qualify as meat due to damage to the muscular structure due to the high pressure applied during the separation, therefore cannot be included in the meat content of products.
The aim of our experiment was to compare whole, minced meat, MDM and MSM from turkey (raw and in the form of meat paste). Technofunctional tests (water-holding and -binding capacity), color measurement, chemical composition (moisture, protein and fat content), electron microscopic recording, rheological properties show that the quality of MSM is inferior to other meat raw materials. These properties can also result in the production of lower quality products.
Abstract
Starting from mechanical revolution, each day new methods and new equipment have emerged. Today, the Ultra Heat Treatment (UHT) is one of the important technologies that permits to the industry to reduce processing time while maintaining the same quality of the products. Egg and egg products are known as heat-sensitive products, so the UHT enables us to preserve their qualities after a heat treatment.
Our aim is to study the effect of UHT treatment (approximately 67 °C for 190 s) on the Liquid Egg Yolk (LEY). For twenty-one days, the color and the apparent viscosity were measured every seven days, we also studied the damage of protein using DSC (Differential Scanning Calorimetry).
Comparing the two graphs of DSC, the denaturation of protein is distinct. The endothermic peak decreased. This could be seen also on the rheological curves. The apparent viscosity is diminished from 231 mPa.s on the 1st day of storage to 224 mPa.s on 21st day. However, the treated LEY could be stored for longer period than the raw LEY.
Abstract
Animal blood is a by-product, which can be utilized in a value-adding way instead of being wasted. Allergen substitution is a good possibility especially for a substance that is difficult to substitute, such as milk. Blood plasma is a fluid with high protein content without blood (iron) taste and colour, so it is similar to milk in several ways. While investigating the substitution of milk, it is advisable to investigate the substitution of sugar as well because a lot of consumers who exclude milk from their diet find the glycaemic index and energy content of foods important. The investigated model food is a simple, homogeneous matrix: vanilla custard with milk and with and without sugar and vanilla custard with blood plasma and with and without sugar. Colour, pH and rheological attributes of custard sample groups were measured. According to the results the used protein source as well as sweetener significantly determine the colour, pH and texture of the final product. However, colour and pH are easy to change with other components (food colours, acidity regulators) and the effect of milk and sugar substitution on rheological attributes might not be possible to detect without instrumental analysis.
Abstract
Animal blood is a by-product, which can be utilized in a value-adding way instead of being wasted. Allergen substitution is an obvious possibility because many properties of blood plasma are similar to egg white. Techno-functional and sensory attributes (water activity, moisture content, colour and texture related properties) were measured by instrumental methods. The allergenic egg powder can be substituted by non-allergenic blood plasma powder in sponge cakes, but the change in the ingredient has an effect on hardness and tolerating compressive stress until the breaking. In the case of water activity and moisture content, sponge cakes with blood plasma were as desirable as sponge cakes with egg.
Abstract
Eggs are commonly used in the food industry because of their excellent nutrient value and also for their coagulating, foaming, emulsifying, colouring and flavouring properties. Manufacturers substitute shell eggs with processed egg products, such as liquid whole egg, liquid egg yolk or albumin. They have a shelf life of a few weeks, but freezing can increase it to 1 year. However, freezing causes gelation in case of egg yolk. This process is highly dependent on the conditions of freezing and thawing.
In our study, raw liquid egg yolk was frozen and stored for 14 days at −18 °C. On days 1, 7 and 14 samples were thawed by two different methods. Denaturation temperature and enthalpy were investigated by differential scanning calorimetry. Besides, rheological properties were examined at 20 °C, Herschel–Bulkley model was fitted to flow curves of the examined samples. The dry matter content was also recorded during the experiment. Two-way ANOVA was used to analyse data.
The results of the study showed that method of thawing had no significant effect on calorimetric and rheological properties and dry matter content. In contrast, freezing and frozen storage had a significant effect on denaturation enthalpy and rheological properties.