Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: László Lévai x
- Refine by Access: All Content x
Összefoglalás
A növények szeléntartalmát leginkább a talaj felvehető szeléntartalma befolyásolja. Számos európai országban, így Magyarországon is, a talajok szelénben meglehetősen szegények. Kísérleteinkben, talajon (rizoboxos kísérlet) és tápoldaton, kontrollált körülmények között végzett szelénellátás hatását vizsgáltuk, egy egyszikű (kukorica), illetve egy kétszikű (napraforgó) növénynél. A rizoboxos és a tápoldatos kísérleteinkben a szelént szelenit (1, 10, 100 mg/kg), illetve szelenát (0,1, 1, 10 mg/kg) formában adagoltuk, a kontroll (0) növények nem kaptak szelén kezelést. A Se-kezelések hatására a növények Se-tartalma jelentősen megemelkedett. Ez a növekedés a szelenát kezelés hatására intenzívebb volt, mint a szelenit kezelésnél, ugyanakkora koncentrációjú kezelések esetében. A kísérleti növények hajtásának és gyökerének külön történő vizsgálata alapján megállapítottuk, hogy a kukoricánál, és a napraforgónál a Se-koncentrációk nagyobbak voltak a gyökérben, mint a hajtásban. Ez arra utal, hogy a szelén akkumulációja intenzívebb volt a gyökerekben, miközben a hajtásba történő transzlokációja akadályázott. A tápoldatban és rizoboxban (talajban), a szelenit és szelenát kezelés hatására a hajtásban a következő szeléntartalom növekedéseket tapasztaltunk: 1. Tápoldatban: egyszikű (kukorica) szelenit kezelés hatására: 1176 × (0,461 és 542 mg/kg Se); egyszikű (kukorica) szelenát kezelés hatására: 736 × (0,654 és 482 mg/kg Se); kétszikű (napraforgó) szelenit kezelés hatására: 104 × (1,38 és 143 mg/kg Se); kétszikű (napraforgó) szelenát kezelés hatására: 221 × (2,97 és 656 mg/kg Se). A zárójelben a legkisebb, azaz kontroll (0) és a legnagyobb, azaz szelenit esetén 100 mg/kg, míg szelenát esetén 10 mg/kg kezelést kapott növények hajtásának szelén tartalma található. 2. Rizoboxban: egyszikű (kukorica) szelenit kezelés hatására: 45 × (0,736 és 32,8 mg/kg Se); egyszikű (kukorica) szelenát kezelés hatására: 775 × (0,736 és 570 mg/kg Se); kétszikű (napraforgó) szelenit kezelés hatására: 41 × (0,249 és 10,3 mg/kg Se); kétszikű (napraforgó) szelenát kezelés hatására: 859 × (0,249 és 214 mg/kg Se). A zárójelben a legkisebb, azaz kontroll (0) és a legnagyobb, azaz szelenit esetén 100 mg/kg, míg szelenát esetén 10 mg/kg kezelést kapott növények hajtásának szelén tartalma található.
Összefoglalás
A molibdén alapvető nyomelem a növényi tápanyagellátásban. Növényélettani jelentő ségét 1940-ben bizonyították be. A növény nitrogén anyagcseréjében van fontos szerepe, hiányában nitrát felhalmozódás tapasztalható.
Kutatómunkánk célja kettős volt: Kísérleteink során egyrészt arra a kérdésre kerestük a választ, hogyan változik a kukorica (Zea mays L. cv Norma SC) csíranövény Mo, Fe és S koncentrációja növekvő kon centrációjú Mo-kezelések során. Azért tartottuk fontosnak e három elem koncentrációjának nyomon követését, mert a nitrátredukcióban, a nitrát-reduktáz működésében ezek az elemek kiemelt szerepet töltenek be. Másrészt kísérleteinkkel laboratóriumi körülmények között kívántuk igazolni, hogy szoros összefüggés van a molibdénellátás és nitrátredukció között: a növények fiziológiai molibdén szükségletét biztosítva, csökkenteni tudjuk nitrát tartalmukat.
Kísérleteink az alábbi két típusba sorolhatók: rizoboxos- és tápoldatos kísérletek.
Rizoboxos kísérleteinkben három különböző koncentrációjú Mo-kezelést alkalmaztunk: 30, 90, 270 mg/kg. A kontroll talajhoz pedig nem adtunk molibdént.
Tápoldatos kísérleteinkben a kezelések a következők voltak: 0,01 μM, 0,1 μM, 1 μM Mo koncentrációk. A kontroll tápoldat nem tartalmazott molibdént.
Az eredményekből egyértelműen látható, hogy a Mo-kezelések hatására, a kukori ca csíranövények Mo koncentrációja jelentősen megemelkedett. A kísérleti növények hajtásának és gyökerének külön történő vizsgálata alapján megállapítottuk, hogy a gyökerekben mért Mo-koncentrációk nagyobbak a hajtásban mért értékeknél. Ez arra utal, hogy a gyökerekben, a vizsgált körülmények között a nitrát akkumulációja intenzívebb volt. A molibdénnel ellentétében a kén és a vas koncentrációjának alakulásában nem figyeltünk meg egyértelmű, jelentős növekedést.
Összefoglalás
A növények nitrogén asszimilációja bonyolult biokémiai folyamatok összességén keresztül valósul meg. Növényeink a nitrogént a talajból több formában vehetik fel. A felvett formától függetlenül valamennyi forma ammóniummá alakul, hogy a növény hasznosítani tudja.
Célkitűzésünk volt, hogy laboratóriumi körülmények között vizsgáljuk, hogyan hat a növekvő koncentrációjú molibdénellátás a különböző nitrogén-formákra, valamint hogyan befolyásolja a nitrátasszimiláció folyamatát.
Kísérleti növényként egy kétszikű (napraforgó, Helianthus annuus L. cv Arena PR) növényt választottunk, melynél külön vizsgáltuk a hajtás és a gyökér molibdén koncentrációját.
Kísérletünkkel igazoltuk, hogy a nitrátasszimiláció egyik lényeges mozzanatának, a nitrátredukciónak a zavartalan lejátszódásához a molibdén nélkülözhetetlen. A megfelelő molibdénellátás a nitrát-reduktáz enzim aktivitását növeli, így elkerülhetjük, hogy a nitrát káros mennyiségben halmozódjon fel növényeinkben.
A molibdénellátás és a nitrátredukció közötti összefüggés vizsgálatának gyakorlati értékét különösen a levél- és gyökérzöldségek termesztésénél hasznosíthatjuk, mivel ezek a növényeink a nitrátot az átlagostól jóval nagyobb koncentrációban tartalmazzák. Amennyiben gondoskodunk róla, hogy a talajaink molibdén koncentrációja elérje a növények fiziológiai molibdén szükségletét (0,01 μM), csökkenteni tudjuk nitrát tartalmukat. Ez az eredmény humán-egészségügyi szempontból lényeges.
Összefoglalás
A növények tápanyagfelvétele a termés mennyiségét és a minőségét meghatározó egyik fő fiziológiai folyamat. A kedvezőtlen környezeti feltételek csökkentik a tápanyagfelvételt, a növény szervesanyag-felhalmozását, ezzel az elérhető termés mennyiséget is. A növénytermesztés eredményességét meghatározó, egyik legfontosabb abiotikus tényező a talaj pH-ja. Bár a talaj pH-jának hatása sokrétű, mégis az egyik leginkább kutatott terület a pH és a talajok felvehető tápanyagtartalmának összefüggése. Kísérleteinkben a tápoldat és az apoplazmatikus bikarbonát, valamint egy biotrágya (Phylazonit MC®) hatását vizsgáltuk laboratóriumi körülmények között, tápoldaton nevelt fiatal kukorica és uborka csíranövényekre. Meghatároztuk a növények relatív klorofill tartalmát, a hajtás és gyökér növekedését, szárazanyag-felhalmozását, elemtartalmát, különösen az egyik legfontosabb terméslimitáló elem, a vas felvételében. Megállapítottuk, hogy a környezet magas bikarbonát koncentrációja stresszként hat, a tápközeg pH-jának módosításán keresztül jelentősen befolyásolja a vizsgált folyamatokat. Megfigyelésünk alapján arra a következtetésre jutottunk, hogy a gyökér és a mezofillum sejtek tápanyagfelvétele azonos mechanizmus szerint történik. Ezen megfigyelésünk alátámasztja Marschner és Römheld (1994) eredményeit. A tápoldatba és az apoplazmába juttatott bikarbonát hatása hasonló, ami mögött a tápanyagfelvétel hasonló membránfolyamatait valószínűsítjük. A pH mellett a mezofillum sejtközötti járatainak bikarbonát koncentrációja is okozhat tápanyag hiányt (látens tápanyaghiány) megfelelő tápanyagellátás esetén is. Eredményeink szerint a bikarbonát okozta stresszhatás mérsékelhető volt egy baktérium tartalmú biotrágya (Phylazonit MC®) kiegészítő használatával. Feltételezzük, hogy a kedvező hatás mögött a baktériumok és a magasabb rendű növények tápanyag-felvételi hasonlóságai vannak.
Összefoglalás
Környezetünk védelme közös feladat. Minden szennyezés, ami földjeinket, növényeinket, a szűkebb, vagy a tágabb értelemben vett környezetünket éri, előbb-utóbb megjelenik az élelmiszerlánc valamelyik tagjában, végül a piramis csúcsán álló emberben.
Munkánk célja egy átlátható képet adni néhány ipari hulladék – cementpor, mészpor, mészhidrátpor – növényekre gyakorolt fiziológiai hatásáról. A vizsgált anyagok a növények számára sok létfontosságú elemet tartalmaznak (pl.: vas, kálium, magnézium, foszfor, cink), de mindezek mellett alumínium, ólom, króm és kobalt is megtalálható bennük. Ezek figyelembevételével vizsgáltuk a csírázásra gyakorolt hatást, a növények elemfelvételét, a száraz anyag felhalmozást és a relatív klorofill tartalmat. A laboratóriumi kísérletek során bizonyítottá vált a cementpor, a mészpor és a mészhidrátpor kedvező és kedvezőtlen fiziológiai hatása. Kétségtelen, hogy a laboratóriumban a környezet kompenzáló hatása kizárt, azonban a környezeti terhelések semlegesítése természetes körülmények között sem végtelen.