Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: László Leindler x
Clear All Modify Search

Abstract  

We show that the classical monotonicity conditions can be moderated in four theorems of P. Chandra.

Restricted access

Abstract  

Among others a general equivalence theorem on Fourier cosine series with monotone coefficients are generalized to coefficients of rest bounded variation. Similarly some theorems of Aljančić are also extended, namely one of them in this generalized form is required to the proof of the equivalence theorem.

Restricted access
Restricted access

Summary Utilizing the good properties of the sequences of rest bounded variation, the usual monotonicity hypothesis on the coefficients of Fourier cosine series given in previous theorems will be weakened in the sense that the sequence of coefficients is of rest bounded variation. The theorems in question reformulate the conditions in some theorems on embedding relations of Besov classes.

Restricted access

Summary Five interesting theorems of Konyushkov giving estimations for the best approximation in terms of the coefficients of a Fourier series are generalized or extended to the cases when the monotone or quasi-monotone coefficients are replaced by sequences of rest bounded variation of coefficients.

Restricted access

Summary  

Recently we extended some interesting theorems of Konyushkov giving estimations for the best approximation by the coefficients of the Fourier series of the function in question. We replaced the monotone or quasi-monotone coefficient sequences by coefficient sequences of rest bounded variation. In this note both notions are generalized for such coefficient sequences where certain restriction is given only in terms of the "rest variation" of the sequence.

Restricted access

Abstract  

We verify a newer version of a certain embedding theorem pertaining to the relation being between strong approximation and a certain wide class of continuous functions. We also show that a new class of numerical sequences defined in this paper is not comparable to the class defined by Lee and Zhou, which is one of the largest among the classes being extensions of the class of monotone sequences.

Restricted access

Abstract  

The aim of the paper is to analyze the relationship of some newly defined classes of numerical sequences to the important Sidon-Telyakovskiĭ class.

Restricted access