Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: L-E. De Geer x
  • Refine by Access: All Content x
Clear All Modify Search

Summary  

Finland has the operational capability to take airborne gamma-ray measurements in emergency situations. The original purpose of airborne radiation mapping in Finland was to identify hazardous areas containing radioactive fall-out after a nuclear accident or use of nuclear weapons. Regular exercises are held annually to keep the operational functionality at a high level. The achieved capability has been well demonstrated in international INEX-2-FIN 1997 and Barents Rescue 2001 exercises. The knowledge and competence achieved can easily be applied in international radiation monitoring campaigns designed to expose undeclared nuclear materials or other clandestine nuclear activities. The essential improvements in the detection system are linked to the ability to locate point-like radiation sources rather than large areas of fall-out. This paper describes the aerial gamma-ray measurement method and its usability for the detection of nuclear material production chains and trails of fission or activation products. The ability of airborne detection systems in revealing the use of undeclared nuclear materials has been tested. Various scenarios for exposing clandestine nuclear material production, enrichment and nuclear waste trails have been considered. Based on detection capability calculations and testing in practice, it was found that the detection of one un-shielded significant quantity of natural uranium (10 tons of yellow cake in storage barrels) is possible through the daughter products, using one single 6"'4" NaI detector on the airplane. The developed fixed wing gamma measurement technique is now able to detect significant amounts of nuclear material conveniently and cost-effectively. Large areas can be screened to identify suspicious sub-areas for more detailed ground-based inspection.

Restricted access