Search Results

You are looking at 1 - 10 of 75 items for

  • Author or Editor: L. Chen x
  • Refine by Access: All Content x
Clear All Modify Search

Rapid and accurate diagnosis of influenza is important for patient management and infection control. We determined the performance of the cobas® Influenza A/B assay, a rapid automated nucleic acid assay performed on the cobas® Liat System for qualitative detection of influenza A and influenza B from nasopharyngeal (NP) swab specimens. Retrospective frozen and prospectively collected NP swabs from patients with signs and symptoms of influenza collected in universal transport medium (UTM) were tested at multiple sites including CLIA-waived sites using the cobas® Influenza A/B assay. Results were compared to the Prodesse ProFlu+ assay and to viral culture. Compared to the Prodesse ProFlu+ Assay, sensitivities of the cobas® Influenza A/B assay for influenza A and B were 97.7 and 98.6%, respectively; specificity was 99.2 and 99.4%. Compared to viral culture, the cobas® Influenza A/B assay showed sensitivities of 97.5 and 96.9% for influenza virus A and B, respectively; specificities were 97.9% for both viruses. Polymerase chain reaction (PCR)/sequencing showed that the majority of viral culture negative but cobas® Influenza A/B positive results were true positive results, indicating that the cobas® Influenza A/B assay has higher sensitivity compared to viral culture.

In conclusion, the excellent accuracy, rapid time to result, and remarkable ease of use make the cobas® Influenza A/B nucleic acid assay for use on the cobas® Liat System a highly suitable point-of-care solution for the management of patients with suspected influenza A and B infection.

Open access

We prove central limit theorems and related asymptotic results for where W is a Wiener process and Sk are partial sums of i.i.d. random variables with mean 0 and variance 1. The integrability and smoothness conditions made on f are optimal in a number of important cases.

Restricted access

Abstract  

In this paper, the Laplace inversion technique, i.e., CONTIN program, has been used to analyze the positron lifetime spectra to obtain continuous annihilation rate distribution (ARD). Two kinds of materials were studied by measuring the positron ARD. In dealuminated Y-type zeolite, five peaks were observed, and the longest component is related to o-Ps lifetime in the secondary pores. In GaAs and in InP semiconductors, the native defects were successfully identified by the difference in positron ARD shape. More evidently, when InP sample was irradiated with high energy heavy ions, the positron ARD showed difference with different irradiation dose. These results indicate that the CONTIN analysis is a good complement to the PATFIT program.

Restricted access

Abstract  

Aluminum (Al) nanopowders with mean diameter of about 50 nm and passivated by alumina (Al2O3) coatings were prepared by an evaporation route: laser heating evaporation. Thermal properties of the nanopowders were investigated by simultaneous thermogravimetric-differential thermal analysis (TG-DTA) in dry oxygen environment, using a series of heating rates (5, 10, 20, 30, 50 and 90°C min−1) from room temperature to 1200°C. With the heating rates rise, the onset and peak temperatures of the oxidation rise, and the conversion degree of Al to Al2O3 varies. However, the specific heat release keeps relatively invariant and has an average value of 18.1 kJ g−1. So the specific heat release is the intrinsic characteristic of Al nanopowders, which can represent the ability of energy release.

Restricted access

CuO nanocrystals in thermal decomposition of ammonium perchlorate

Stabilization, structural characterization and catalytic activities

Journal of Thermal Analysis and Calorimetry
Authors: L.-J. Chen, G.-S. Li, and L.-P. Li

Abstract  

CuO nanocrystals of different surface areas were prepared. All samples were characterized by X-ray diffraction, transition electron microscope, thermogravimetry, Brunauer-Emmett-Teller technique, Fourier transform infrared spectroscopy, and Raman spectroscopy. CuO nanocrystals showed a stable monoclinic structure. With increasing surface areas, the surface hydration became significant, which is followed by shifts in infrared frequencies and Raman phonon modes. CuO nanocrystals were explored as an additive to catalytic decomposition of ammonium perchlorate (AP). AP decomposition underwent a two-stage process. Addition of CuO nanocrystals led to a downshift of high-temperature stage towards lower temperatures.

Restricted access

Gastrodia elata Blume polysaccharide (GEP) was extracted and then chemically characterised. Its antioxidant activity was evaluated in vitro and in vivo. The results of the in vitro investigation show that GEP consists of glucose with molecular weight of 875 185 Da and exhibits high hydroxyl radical scavenging, as well as 2,2-diphenyl-1- picrylhydrazyl activity and reducing capacity. For antioxidant activity in vivo, D-galactose-induced-aged mice were orally administered with three different doses of GEP over a period of 6 weeks. The administration of GEP dosedependently increased the body weight gain rates, liver and brain indices, superoxide dismutase and glutathione peroxidase activities, and malondialdehyde levels in the sera and brains of ageing mice. These results suggest that GEP exhibits high antioxidant activity and can retard human ageing associated with free radicals.

Restricted access

Abstract  

This work reported on the thermal decomposition of ammonium perchlorate activated by addition of NiO nanocrystals with different surface areas. NiO samples were characterized by X-ray diffraction (XRD), transition electron microscope (TEM), Brunauer-Emmett-Teller (BET) technique, Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. With increasing annealing temperature, the surface areas of NiO samples reduced from 108.6 to 0.9 m2 g−1. The catalytic activities of NiO nanocrystals on the thermal decomposition of ammonium perchlorate were investigated by thermogravimetric analysis (TG) coupled with differential thermal analysis (DTA). With addition of NiO nanocrystals, thermal decomposition temperature of AP decreased greatly. Larger surface areas of NiO nanocrystals promoted the thermal decomposition of AP.

Restricted access

Abstract  

Radiolabeled somatostatin analogue is a useful ligand for scintigraphic imaging of somatostatin receptor-bearing tumors. In this study, we investigated the effects of different radiolabeling conditions on labeling yield and ratio between mono-iodinated and di-iodinated125I-Tyr3-octreotide by HPLC analysis. In vitro and in vivo stabilities of125I-Tyr3-octreotide and111In-DTPA-D-Phe1-octreotide were also determined. Both radiolabeled compounds were relatively stable in vitro, but were decomposed to free125I− and111In-DTPA in vivo, respectively.

Restricted access