Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: L. Du x
Clear All Modify Search

Complex cell walls of barley hulls contain phenolic constituents — hydroxycinnamic acids, mainly ferulic acid (3-methoxy-4-hydroxy-cinnamic acid, FA) and para-coumaric acid (4-hydroxycinnamic acid, PCA). Ferulic acid is produced via the phenylpropanoid biosynthetic pathway and is covalently cross-linked to polysaccharides by ester bonds and to components of lignin mainly by ether bonds. Various studies have consistently indicated that FA is among the factors most inhibitory to the biodegradability of plant cell wall polysaccharides. PCA is also covalently linked to polysaccharides (minor) and lignin (major), but PCA does not form the inhibitory cross-linkages as FA does. It is considered to represent plant cell wall lignification. The objective of this study was to determine the genotypic variation and magnitude of difference in the concentration of the hydroxycinnamic acids in terms of FA and PCA as well as their ratios in barley hull and seeds in sixteen varieties of barley collected during three years. These data will be correlated to barley nutrient availability in future study. The barley varieties included CDC Cowboy, Valier, TR251, Newdale, RCSL97, KXN/TLN-147 (AU), WABAR2160 (AU), Harrington, CDC Copeland, CDC Kendall, AC Metcalfe, CDC Dolly, McLeod, CDC Bold, CDC Helgason and CDC Trey. The focus of this study was on ferulic acid because of its inhibitory effect on rumen degradation and digestion which are highly related to nutrient availability in animals. The results showed significant differences (P < 0.01) a mong the barley varieties in ferulic acid and p-coumaric acid and their ratio. Whole barley seed contained higher (P<0.05) ferulic acid concentration than p-coumaric acid, ranging from 509 to 679 μg/g DM for ferulic acid and 131 to 345 μg/g DM for p-coumaric acid. The ratios of ferulic acid to p-coumaric acid ranged from 1.8 to 3.9. The ferulic acid concentration in hull was higher (P < 0.05) than that in whole seed, ranging from 2,320 to 4,206 μg/g DM. Percentage of ferulic acid content in hull and dehulled seed ranged from 38 to 70% and 30 to 62%, respectively. Growth year affect affected the hydroxycinnamic acid profiles in barley seed and hull. In conclusion, there were large differences in the ferulic acid and para-coumaric acid among the barley varieties indicating genotypic variation. Harrington contained highest and Valier contained lowest FA in whole seed. Barley TR251 contained lowest % of FA content in the hull and highest % of FA content in the dehulled seed. Future study is needed to understand the relationship between the hydroxycinnamic acid profile in barley seeds and hull and nutrient utilization and availability of barley in animals.

Restricted access

Abstract  

An improved accurate coincidence correction formula has been deduced on the basis of Cox's theory considering the complex situations of differences in pulse shaping width as well as a relative delay existing between the two channels. The correctness has been examined by experiments.

Restricted access

Summary

Cleavage of glucosinolates with myrosinase yields thioglycosidic compounds which have cancer chemoprevention activity. In this paper, glucosinolates in an extract (2.0 g) of broccoli seeds (Brassica oleracea var. italica) were separated by high-speed countercurrent chromatography (HSCCC) with the solvent system n-butanol-acetonitrile-10% ammonium sulfate solution 1:0.5:2.2 (v/v) to yield five glucosinolate compounds after desalting and decolorizing by MCI column chromatography. The five compounds, 7-methylsulfinylheptyl glucosinolate (22.4 mg), 4-pentenyl glucosinolate (33.6 mg), 3-butenyl glucosinolate (24.0 mg), 4-methylsulfinylbutyl glucosinolate (161.4 mg), and 3-methylsulfinylpropyl glucosinolate (29.6 mg), were identified by ESI-MS, 1H NMR and 13C NMR. The purity of the products was >98%, and 7-methylsulfinylheptyl glucosinolate was obtained from broccoli seeds for the first time.

Restricted access

The common wheat line, YW243, developed in our research group, was tested for the resistances of barley yellow dwarf virus (BYDV), powdery mildew (Pm) and stripe rust in field, and was analyzed by molecular markers for convenient trace of the resistant genes in breeding. Genomic in situ hybridization (GISH) analysis and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) assay further demonstrated that YW243 was a homozygous multiple translocation line of Triticum aestivum, Thinopyrum intermedium and Secale cereale (T7DS·7DL-7XL & 1BL·1RS). The disease resistance test and marker analysis showed that YW243 carried seven resistance genes to the three diseases, including Bdv2 to BYDV on 7DL-7XL, Pm4 to powdery mildew on 2AL, Yr2, Yr9, Sr 31 and Lr26 and a new Yr to stripe rust on 7B, 1BL, 1RS and 2BL. Restriction fragment length polymorphism (RFLP) markers Xpsr687 and Xwg380 , sequence tagged site (STS) marker STS 1700 , simple sequence repeat (SSR) markers Xgwmc364 and Xgwm582 , SSR markers Xgwm388 and Xgwm501 can be used as diagnostic tools to track Bdv2, Pm4, Yr2, Yr9 and Yr in YW243 , respectively; and two amplified fragment length polymorphism (AFLP) markers M54E63 - 700 and M54E64 - 699 can also be used to select Yr in YW243 .

Restricted access

Summary

Chestnut exhibits anti-inflammatory, styptic, anti-diarrhea, and analgestic effects as a traditional Chinese medicine. There is increasing evidence that shows that the consumption of chestnuts has become more important in human nutrition due to the health benefits provided by the antioxidants. The phenolic compounds are responsible for major bioactivities, such as anti-tumor and anti-oxidation. A high-performance liquid chromatography (HPLC) method with diode array detection (DAD) was established for the simultaneous determination of six phenolic compounds (gallic acid, GA; protocatechuic acid, PR; catechin, CA; epicatechin, EP; quercetin, QU; kaempferol, KA) in Chinese chestnut (Castanea mollissima blume) kernel. The sample followed by separation on Eclipse XDB-C18 column (150 × 4.6 mm, id., 5 μm) with gradient elution of methanol-1.0% acetate acid solution as a mobile phase, at a temperature of 30°C, under the ratio of 1.2 mL min−1, with 5 μL injection volume, and multi-wavelength synthesis was used with DAD. The correlation coefficients were larger than 0.999, the recoveries were 97.58% for GA, 100.41% for PA, 96.23% for CA, 101.38% for QU, 99.15% for EP, and 98.60% for KA, relative standard deviation (RSD) were 1.04% for GA, 1.21% for PA, 1.09% for CA, 1.19% for QU, 1.06% for EP, and 1.20% for KA. This method was applied for the determination of phenolics in chestnut kernel and was found to be fast, sensitive, and suitable.

Restricted access

Abstract  

A novel double -diketone 1,6-bis(1-phenyl-3-methyl-5-oxo-pyrazol-4-yl) hexanedione-[1,6] (BPMOPH) was further studied on its coordination compounds with uranium and thorium, respectively. The IR, UV, and1H-NMR spectra were examined, and the proposed structure is discussed.

Restricted access

Summary  

Greater availability of therapeutic radioisotopes is required to meet the demands for increasing clinical applications in nuclear medicine, oncology and interventional cardiology. Because of the need for very high specific activity products, methods other than direct neutron capture reactions (n,γ-elastic and n,n’-inelastic routes) are required to insure that the highest specific activity - and hopefully no carrier added (nca) - radioisotopes are available. Two major methods to obtain nca radioisotopes from reactors are through the use of radionuclide generator systems using reactor-produced parents and the formation of desired radioisotopes through beta-decay of reactor-produced species. In this paper we describe our recent development of new approaches to obtain nca 177Lu from the decay of reactor-produced 177Yb and free of the long-lived 177mLu (T 1/2 = 160 d) radiocontaminant. We also describe preliminary results of our new “indirect” method for the production of 195mPt via decay of 195mIr, reactor-produced by neutron irradiation of highly enriched 193Ir.

Restricted access

Chinese endemic wheat landraces possess unique morphological features and desirable traits, useful for wheat breeding. It is important to clarify the relationship among these landraces. In this study, 21 accessions of the four Chinese endemic wheat landrace species were investigated using single-copy genes encoding plastid Acetyl-CoA carboxylase (Acc-1) and 3-phosphoglycerate kinase (Pgk-1) in order to estimate their phylogenetic relationship. Phylogenetic trees were constructed using maximum parsimony (MP), maximum likelihood (ML) and Bayesian, and TCS network and gene flow values. The A and B genome sequences from the Pgk-1 loci indicated that three accessions of Triticum petropavlovskyi were clustered into the same subclade, and the T. aestivum ssp. tibetanum and the Sichuan white wheat accessions were grouped into a separate subclade. Based on the Acc-1 gene, T. aestivum ssp. tibetanum and T. aestivum ssp. yunnanense were grouped into one subclade in the A genome; the B genome from T. petropavlovskyi and T. aestivum ssp. tibetanum, and the Sichuan white wheat complex and T. aestivum ssp. tibetanum were grouped in the same clades. The D genome of T. aestivum ssp. yunnanense clustered with T. petropavlovskyi. Our findings suggested that (1) T. petropavlovskyi is distantly related to the Sichuan white wheat complex; (2) T. petropavlovskyi, T. aestivum ssp. tibetanum and T. aestivum ssp. yunnanense are closely related; (3) T. aestivum ssp. tibetanum is closely related to T. aestivum ssp. yunnanense and the Sichuan white wheat complex; and (4) T. aestivum ssp. tibetanum may be an ancestor of Chinese endemic wheat landraces.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: F. Xu, L. Sun, P. Chen, Y. Qi, J. Zhang, J. Zhao, Y. Liu, L. Zhang, Zhong Cao, D. Yang, J. Zeng and Y. Du

Abstract  

The heat capacities of LiNH2 and Li2MgN2H2 were measured by a modulated differential scanning calorimetry (MDSC) over the temperature range from 223 to 473 K for the first time. The value of heat capacity of LiNH2 is bigger than that of Li2MgN2H2 from 223 to 473 K. The thermodynamic parameters such as enthalpy (HH 298.15) and entropy (SS 298.15) versus 298.15 K were calculated based on the above heat capacities. The thermal stabilities of them were investigated by thermogravimetric analysis (TG) at a heating rate of 10 K min−1 with Ar gas flow rate of 30 mL min−1 from room temperature to 1,080 K. TG curves showed that the thermal decomposition of them occurred in two stages. The order of thermal stability of them is: Li2MgN2H2 > LiNH2. The results indicate that addition of Mg increases the thermal stability of Li–N–H system and decrease the value of heat capacities of Li–N–H system.

Restricted access

Rht18, derived from Triticum durum (tetraploid) wheat, is classified as a gibberellic acid (GA)-responsive dwarfing gene. Prior to this study, the responses of Rht18 to exogenous GA on agronomic traits in hexaploid wheat were still unknown. The response of Rht18 to exogenous GA3 on coleoptile length, plant height, yield components and other agronomic traits were investigated using F4:5 and F5:6 hexaploid dwarf lines with Rht18 derived from two crosses between the tetraploid donor Icaro and tall Chinese winter wheat cultivars, Xifeng 20 and Jinmai 47. Applications of exogenous GA3 significantly increased coleoptile length in both lines and their tall parents. Plant height was significantly increased by 21.3 and 10.7% in the GA3-treated dwarf lines of Xifeng 20 and Jinmai 47, respectively. Compared to the untreated dwarf lines, the partitioning of dry matter to ears at anthesis was significantly decreased while the partitioning of dry matter to stems was significantly increased in the GA3-treated dwarf lines. There were no obvious changes in plant height and dry matter partitioning in the GA3-treated tall parents. Exogenous GA3 significantly decreased grain number spike–1 while it increased 1000-kernel weight in both the dwarf lines and tall parents. Thus, applications of exogenous GA3 restored plant height and other agronomic traits of Rht18 dwarf lines to the levels of the tall parents. This study indicated that Rht18 dwarf mutants are GA-deficient lines with impaired GA biosynthesis.

Restricted access