Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: L. Fan x
  • All content x
Clear All Modify Search

Abstract  

A critical thermodynamic analysis of differential thermal calorimetry is reported herein to gain further insight into the phenomena leading to the reported differences between kinetic parameters extracted from isothermal DSC methods and those from dynamic DSC methods. The sources have been identified for the variations observed in the total heat of reaction as a function of the heating rate in dynamic DSC experiments. The analysis clearly indicates that these variations are, in fact, to be anticipated. The relationships necessary for extracting kinetic data from both isothermal and dynamic experiments are derived rigorously by resorting to classical thermodynamics.

Restricted access

Abstract  

Different scanning calorimetry and dynamic mechanical analysis are used to study the thermal behavior of composites by melt-mixing low-density polyethylene (LDPE) matrix and zinc oxide whisker (ZnOw) fillers. Micrographs of the composites illustrate that needle or wedge shaped ZnOw are distributed uniformly in the LDPE matrix. Dielectric properties of the composites are measured in a frequency range of 1-10 MHZ. The results show that the addition of ZnOw does not affect the melting behavior of LDPE, but has an important effect on the heat of fusion, dynamic mechanical behavior, and dielectric behavior of the composites.

Restricted access

This research was aimed to study the cell wall degradation and the dynamic changes of Ca2+ and related enzymes in developing aerenchyma of wheat root under waterlogging. An examination of morphological development by light and electron microscope revealed that the structure of cell wall in middle cortical cells remained intact after 12 h of waterlogging and turned thinner after waterlogging for 24 h. At 48 h, the aerenchyma has been formed. The cellulase activity gradually increased in middle cortical cells within 24 h of waterlogging, and decreased with the formation of aerenchyma. Fluorescence detection and subcellular localization of Ca2+ showed the dynamic changing of Ca2+ at the cellular and subcellular levels during the development of aerenchyma. The activity of Ca2+-ATPase enhanced markedly in intercellular space, plasma membrane and tonoplast of some middle cortical cells after 8 h of waterlogging and remained high after 24 h, but it decreased after 48 h of waterlogging. All these suggests that cellulase, Ca2+ and Ca2+-ATPase show a dynamic distribution during the aerenchyma development which associated with the cell wall degradation of middle cortical cells. Moreover, there is a feedback regulation between Ca2+ and Ca2+-ATPase.

Restricted access

Abstract  

Radiolabeled somatostatin analogue is a useful ligand for scintigraphic imaging of somatostatin receptor-bearing tumors. In this study, we investigated the effects of different radiolabeling conditions on labeling yield and ratio between mono-iodinated and di-iodinated125I-Tyr3-octreotide by HPLC analysis. In vitro and in vivo stabilities of125I-Tyr3-octreotide and111In-DTPA-D-Phe1-octreotide were also determined. Both radiolabeled compounds were relatively stable in vitro, but were decomposed to free125I− and111In-DTPA in vivo, respectively.

Restricted access

This paper develops an instrumental analytical approach for detection of fourteen polycyclic aromatic hydrocarbons (PAHs) in edible oil samples using gel permeation chromatography (GPC) and ultra-high performance liquid chromatography (UHPLC) coupled with diode array detector (DAD), and fluorescence detector (FLD). The GPC was used to remove triglycerides from edible oil samples. The extracted samples were then detected using UHPLC—DAD—FLD. In order to obtain good separation and high reproducibility, the UHPLC—DAD—FLD experimental condition was optimized. The PAHs including three groups of isomeric PAHs can be separated completely in 12 min using BEH Shield RP 18 column with a suitable gradient elution program. The mean recoveries were in the range of 73–110% with an acceptable reproducibility (RSD < 10%, n = 3). During real sample analysis, the method can decrease the chance of false positives with both DAD and FLD being used simultaneously. The results indicate that the approach is simple, easy, and acceptably reproducible, thereby showing great potential as a method for detection of fourteen PAHs contained in edible oil samples.

Open access

Traditional Chinese medicine (TCM) has been widely used in many countries for thousands of years and played an indispensable role in the prevention and treatment of diseases, especially the complicated and chronic ones. However, the application of TCM in diseases is still not fully recognized by people around the world, the main reason is that Chinese herb is a very complex mixture containing hundreds of different components. Thus, it is essential to make quality control and evaluation of TCM. A new quality evaluation method, quantitative analysis of multi-components by single marker (QAMS), was developed to the quality control of alkaloids in TCM, a case study on Radix aconiti lateralis, named Fuzi in Chinese. Six alkaloids, including aconitine, hypaconitine, mesaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, were selected as main components to evaluate the quality of Radix aconiti lateralis. The feasibility and accuracy of QAMS were checked by the external standard method, and various high-performance liquid chromatographic instruments and chromatographic conditions were investigated to verify its applicability. Using aconitine as the internal reference substance and the content of aconitine was calculated according to relative correction factors by high-performance liquid chromatography. The present results showed that there was no significant difference observed between the QAMS method and the external standard method with the relative average deviations less than 3.0%, and QAMS is an effective way to control the quality of herbal medicines and seems to be a convenient and accurate approach to analyze multi-composition when reference substances are unavailable.

Restricted access

Trehalose dihydrate, on careful dehydration below its fusion point, retains its original crystal facets but becomes X-ray amorphous, an unusual example of direct crystal-to-glass transformation. From DSC studies, the glass obtained by this route seems to be of abnormally low enthalpy, but after an initial scan, the normal form of glass transition is exhibited, withT g=115‡C, a higher value than previously reported. We give a preliminary thermal and mechanical characterization of this material and find it to be a very fragile liquid. The highT g is shown to rationalize the exceptionally high water content of the trehalose+water solution that vitrifies at ambient temperature (i.e.T g=298 K), and hence helps explain its use by Nature as a desiccation protectant. The spontaneous vitrification of crystalline materials during desolvation is related to the phenomenology of pressure-induced or decompression-induced vitrification of crystals via the concept of limiting metastability.

Restricted access

The inhibitory effects of phytic acid (PA) on the browning of fresh-cut chestnuts and the associated mechanisms of PA on polyphenol oxidase (PPO) and peroxidase (POD) activities were investigated. The enzymatic browning of chestnut surfaces and interiors was suppressed by soaking shelled and sliced chestnuts in a PA solution. The specific activities of PPO and POD extracted from chestnuts declined due to inhibition by PA. PA was determined to be a competitive inhibitor of both PPO and POD by Lineweaver-Burk plots. The binding modes of PA with PPO and POD were analysed by AutoDock 4.2.

Restricted access

Abstract  

The recombination of hydrogen and oxygen in technical gaseous waste of nuclear power plants in enlarged scale experiment has been studied on the basis of our previous work.1 The catalyst and its best operating conditions for recombination of hydrogen and oxygen determined in a small scale experiment were demonstrated and tested. The results show that the data obtained in an enlarged scale experiment agreed well with that of in a small scale test. The recombination rate of H2 and O2 was higher than 98.3% and 99.98% respectively. After recombination, the residual concentrations of H2 and O2 in waste gas were O2<3 ppm, H2<400 ppm. The Pd-Al2O3 catalyst and operating conditions determined for gaseous waste processing of nuclear power plants were satisfactory.

Restricted access

Senescence in a wheat (Triticum aestivum L.) leaf is a programmed degeneration process leading to death. During this process, green leaf area duration (GLAD) and green leaf number of main stem (GLNMS) are gradually reduced. In this study, the two traits of Hanxuan10/Lumai14 DH population at different development stages after anthesis were evaluated under rainfed and irrigated conditions, and QTLs were detected. GLAD and GLNMS of two parents and DH population under rainfed condition were less than those under irrigated condition, and close correlations (P < 0 05) were found between GLAD and GLNMS after 25 DAA under both water conditions. GLAD and GLNMS were co-controlled by major and minor genes. QTLs for GLAD were stably expressed at different development stages after anthesis under both water conditions, such as QGlad22-1B-1, QGlad25-1B-1, QGlad28-1B-2 detected under irrigated condition and QGlad25-1B-3, QGlad28-1B-4 mapped under rainfed condition were located at a 20.7 cM marker interval of Xgwm273-EST122 on 1B chromosome. But QTLs for GLNMS were inducibly and specifically expressed at specific developmental stages after anthesis under both water conditions. The findings provide dynamic genetic information related to wheat senescence.

Restricted access