Search Results

You are looking at 1 - 10 of 14 items for

  • Author or Editor: L. Feng x
  • All content x
Clear All Modify Search

Abstract  

Yaozhou Kiln at Lidipo and Shangdian are two independent porcelain kiln groups of Yaozhou kiln series in Shanxi Province. Both of them were consisted of some individual porcelain kilns. The samples of 20 pieces of porcelain sherds produced in Shangdian and 43 pieces of porcelain sherds made in Lidipo sites which produced in Kin Dynasty (1115–1234 A.D.) have been collected. The main chemical compositions in body were determined by X-ray fluorescence (XRF). The contents of trace elements were measured using neutron activation analysis (NAA). Principal component analysis (PCA) and stepwise discriminant analysis were used to study the provenance characteristic of these samples. The results indicated that the main components and trace elements in the specimen can be used to reveal the provenance characteristic.

Restricted access

Summary

Oroxylin A (5,7-dihydroxy-6-methoxyflavone), which has showed multiple pharmacological effects, was semi-synthesized chemically as a pharmaceutical agent. Its impurities, degradation products and their formation pathways remain unknown. In the present study, two impurities (5,6,7-trihydroxyflavone, 5-hydroxy-6,7-dimethoxytlavone) and a degradation product (5,7-dihydroxy-8-methoxyflavone) in Oroxylin A bulk drug substance were identified, and their formation pathways were proposed. A reversed phase liquid chromatographic method for the simultaneous determination of Oroxylin A and the three compounds was developed on a C18 column using methanol-acetonitrile-0.1% acetic acid (54:23:23, v/v/v) as the mobile phase. The detection was performed at 271 nm. The method was validated to be robust, precise, specific and linear between 4 and 40 μg mL−1; the limits of detection and quantification of Oroxylin A were 0.01 and 0.04 μg mL−1, respectively. The developed method was found to be suitable to check the quality of bulk samples of Oroxylin A at the time of batch release and also during its stability studies (long term and accelerated stability).

Restricted access

Patrinia scabra Bunge has long been used in clinic as a traditional Chinese medicine for treating leukemia and cancer and regulating host immune response. Despite their wide use in China, no report on system analysis on their chemical constituents is available so far. The current study was designed to profile the fingerprint of ethyl acetate extract of it, and in addition, to characterize the major fingerprint peaks and determine their quantity. Therefore, a detailed gradient high-performance liquid chromatography was described to separate more than 30 compounds with satisfactory resolution in P. scabra Bunge. Based on the chromatograms of 10 batches samples, a typical high-performance liquid chromatographic (HPLC) fingerprint was established with 23 chromatographic peaks being assigned as common fingerprint peaks. Furthermore, a quadrupole time of flight mass spectrometry (Q-TOF/MS) was coupled for the characterization of major compound. As (+)-nortrachelogenin was the most predominant compound in P. scabra Bunge, the quantification on it was also carried out with the method being validated. As a result, (+)-nortrachelogenin was found to be from 1.33 to 2.21 mg g−1 in this plant material. This rapid and effective analytical method could be employed for quality assessment of P. scabra Bunge, as well as pharmaceutical products containing this herbal material.

Open access

Abstract  

After an acute exposure to lanthanum chloride, the pharmacokinetics of calcium uptake in rats was studied by radioactive 47Ca tracer. The accumulated doses of calcium in the left femurs during 24 hours were determined. The results showed that the area under the curves (AUC), specific activity of maximal blood 47Ca concentration (C max), distribution rate constant (K a) and the accumulated dose of calcium in the left femur decreased while time to C max (T peak) increased with the rising dosage of lanthanum exposure. It indicated that lanthanum expose had a negative effect on calcium absorption.

Restricted access

Summary

10-O-(N,N-dimethylaminoethyl)-ginkgolide B (XQ-1) is an intermediate for synthesizing 10-O-(N,N-dimethylaminoethyl)-ginkgolide B methanesulfonate (XQ-1H), which is a novel ginkgolide B derivative and is being developed as a platelet-activating factor antagonist. A specific and rapid liquid chromatographic method was developed for the quantitative analysis of XQ-1 and its three related impurities, which were 10-O-(N,N-dimethylaminoethyl)-11,12-seco-ginkgolide B (imp-1), 10-O-(N,N-dimethylaminoethyl)-11,12-seco-3,14-dehydroginkgolide B (imp-2) and 10-O-(N,N-dimethylaminoethyl)-3,14-dehydroginkgolide B (imp-3) simultaneously in XQ-1 samples. Chromatographic separation was achieved on a CN band stationary phase, with the mobile phase consisting of methanol and 20 mM dipotassium hydrogen phosphate (pH 7.5) (50:50, υ/υ) in isocratic elution. The flow rate was 1.0 mL min−1 and detector was set at 220 nm. The method was optimized by the analysis of the samples generated during the forced degradation studies. The XQ-1, imp-1, imp-2, and imp-3 were completely separated within 15 min. The resolutions (R s) amongst four target compounds were >2. The developed method was validated with respect to specificity, linearity, accuracy, precision, and robustness. The results indicated that the simultaneous LC determination method was readily utilized as a quality control method for XQ-1 sample.

Restricted access

Abstract

Thermal decomposition kinetics of magnesite were investigated using non-isothermal TG-DSC technique at heating rate (β) of 15, 20, 25, 35, and 40 K min−1. The method combined Friedman equation and Kissinger equation was applied to calculate the E and lgA values. A new multiple rate iso-temperature method was used to determine the magnesite thermal decomposition mechanism function, based on the assumption of a series of mechanism functions. The mechanism corresponding to this value of F(a), which with high correlation coefficient (r-squared value) of linear regression analysis and the slope was equal to −1.000, was selected. And the Malek method was also used to further study the magnesite decomposition kinetics. The research results showed that the decomposition of magnesite was controlled by three-dimension diffusion; mechanism function was the anti-Jander equation, the apparent activation energy (E), and the pre-exponential term (A) were 156.12 kJ mol−1 and 105.61 s−1, respectively. The kinetic equation was
ea
and the calculated results were in accordance with the experiment.
Restricted access

The objective of this work was to research the antibacterial effects of orange pigment, which was separated from Monascus pigments, against Staphylococcus aureus. The increase of the diameter of inhibition zone treated with orange pigment indicated that orange pigment had remarkable antibacterial activities against S. aureus. Orange pigment (10 mg ml−1) had a strong destructive effect on the membrane and structure of S. aureus by the analysis of scanning electron microscopy as well as transmission electron microscopy. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) further demonstrated that the cell membrane was seriously damaged by orange pigment, which resulted in the leakage of protein from S. aureus cells. A significant decrease in the synthesis of DNA was also seen in S. aureus cells exposed to 10 mg ml−1 orange pigment. All in all, orange pigment showed excellent antibacterial effects against S. aureus.

Restricted access

Analysis of the binding interaction of (−)-epigallocatechin-3-gallate (EGCG) and pepsin is important for understanding the inhibition of digestive enzymes by tea polyphenols. We studied the binding of EGCG to pepsin using fluorescence spectroscopy, Fourier transform infrared spectroscopy, isothermal titration calorimetry, and protein-ligand docking. We found that EGCG could inhibit pepsin activity. According to thermodynamic parameters, a negative ΔG indicated that the interaction between EGCG and pepsin was spontaneous, and the electrostatic force accompanied by hydrophobic binding forces may play major role in the binding. Data from multi-spectroscopy and docking studies suggest that EGCG could bind pepsin with a change in the native conformation of pepsin. Our results provide further understanding of the nature of the binding interactions between catechins and digestive enzymes.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: J. Zhi, W. Tian-Fang, L. Shu-Fen, Z. Feng-Qi, L. Zi-Ru, Y. Cui-Mei, L. Yang, L. Shang-Wen, and Z. Gang-Zhui

Abstract  

The effects of aluminum (Al) and nickel (Ni) powders of various grain sizes on the thermal decomposition of ammonium perchlorate (AP) were investigated by TG and DSC in a dynamic nitrogen atmosphere. The TG results show that Al powders have no effect on the thermal decomposition of AP at conventional grain size, while the nanometer-sized Ni powders (n-Ni) have a great influence on the thermal decomposition of AP with conventional and superfine grain size. The results obtained by DSC and an in situ FTIR analysis of the solid residues confirmed the promoting effects of n-Ni. The effects of n-Ni have been ascribed to its enhancement on the gas phase reactions during the second step decomposition of conventional grain size AP.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: L. Ji-zhen, F. Xue-zhong, H. Rong-zu, Z. Xiao-dong, Z. Feng-qi, and G. Hong-Xu

Abstract  

The thermal behavior of copper(II) 4-nitroimidazolate (CuNI) under static and dynamic states are studied by means of high-pressure DSC (PDSC) and TG with the different heating rates and the combination technique of in situ thermolysis cell with rapid-scan Fourier transform infrared spectroscopy (thermolysis/RSFTIR). The results show that the apparent activation energy and pre-exponential factor of the major exothermic decomposition reaction of CuNI obtained by Kissinger’s method are 233.2 kJ mol−1 and 1017.95 s−1, respectively. The critical temperature of the thermal explosion and the adiabatic time-to-explosion of CuNI are 601.97 K and 4.4∼4.6 s, respectively. The decomposition of CuNI begins with the split of the C-NO2 and C-H bonds, and the decomposition process of CuNI under dynamic states occurs less readily than those under static states because the dynamic nitrogen removes the strong oxidative decomposition product (NO2). The above-mentioned information on thermal behavior is quite useful for analyzing and evaluating the stability and thermal charge rule of CuNI.

Restricted access