Search Results
You are looking at 1 - 10 of 13 items for
- Author or Editor: L. Kredics x
- Refine by Access: All Content x
Losses due to plant diseases may be as high as 10-20% of the total worldwide food production every year, resulting in economic losses amounting to many billions of dollars and diminished food supplies. Chemical control involves the use of chemical pesticides to eradicate or reduce the populations of pathogens or to protect the plants from infection by pathogens. For some diseases chemical control is very effective, but it is often non-specific in its effects, killing beneficial organisms as well as pathogens, and it may have undesirable health, safety, and environmental risks. Biological control involves the use of one or more biological organisms to control the pathogens or diseases. Biological control is more specialized and uses specific microorganisms that attack or interfere with the pathogens. The members of the genus Trichoderma are very promising against soil-born plant parasitic fungi. These filamentous fungi are very widespread in nature, with high population densities in soils and plant litters [1]. They are saprophytic, quickly growing and easy to culture and they can produce large amounts of conidia with long lifetime.
As a first step of a project aimed at the identification of potential biocontrol agents of Rhizoctonia solani, the rice sheath blight fungus, we surveyed the biodiversity of the genus Trichoderma based on sequence of the internal transcribed spacer (ITS) 1 and 2 of the ribosomal RNA gene cluster in paddy fields in Mazandaran province, Northern Iran. Amongst the six obtained species of Trichoderma, T. harzianum and T. virens proved to be the most frequent species in this habitat. Sequence alignment and phylogenetic analysis revealed that the T. harzianum isolates can be divided into 14 different ITS genotypes clustering in four groups. Our results are in agreement with previous molecular studies, which also revealed that T. harzianum is a complex species comprising more or less different ITS genotypes. T. virens was not as diverse as T. harzianum and three different genotypes were distinguished which constituted only one cluster. All T. atroviride and T. hamatum strains had identical ITS sequences.
Peptaibols and the related peptaibiotics are linear, amphipathic polypeptides. More than 300 of these secondary metabolites have been described to date. These compounds are composed of 5-20 amino acids and are generally produced in microheterogeneous mixtures. Peptaibols and peptaibiotics with unusual amino acid content are the result of non-ribosomal biosynthesis. Large multifunctional enzymes known as peptide synthetases assemble these molecules by the multiple carrier thiotemplate mechanism from a remarkable range of precursors, which can be N-methylated, acylated or reduced. Peptaibols and peptaibiotics show interesting physico-chemical and biological properties including the formation of pores in bilayer lipid membranes, as well as antibacterial, antifungal, occasionally antiviral activities, and may elicit plant resistance. The three-dimensional structure of peptaibols and peptaibiotics is characterized predominantly by one type of the helical motifs a-helix, 310-helix and b-bend ribbon spiral. The aim of this review is to summarize the data available about the biosynthesis, biological activity and conformational properties of peptaibols and peptaibiotics described from Trichoderma species.
Cellulolytic, xylanolytic, chitinolytic and b-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed.
Eleven cold-tolerant Trichoderma isolates were screened for the production of proteolytic activities at 10 °C. Based on the activity profiles determined with paranitroanilide substrates at 5 °C, strain T221 identified as Trichoderma atroviride was selected for further investigations. The culture broth of the strain grown at 10 °C in casein-containing culture medium was concentrated by lyophilization and subjected to gel filtration, which was followed by chromatofocusing of the fraction showing the highest activity on N -benzoyl-Phe-Val-Arg-paranitroanilide. The purified enzyme had a molecular weight of 24 kDa, an isoelectric point of 7.3 and a pH optimum of 6.2. The temperature optimum of 25 °C and the low thermal stability suggested that it is a true cold-adapted enzyme. Substrate specificity data indicate that the enzyme is a proteinase with a preference for Arg or Lys at the P1 position. The effect of proteinase inhibitors suggests that the enzyme has a binding pocket similar to the one present in trypsin.
Species belonging to the filamentous fungal genus Trichoderma are well known as potential candidates for the biological control of plant pathogenic fungi and as cellulase producers of biotechnological importance. Several data were published in the last decade also about the clinical importance of this genus, indicating that Trichoderma strains may be potential opportunistic pathogens in immunocompromised patients. However, there is a lack of information about the potential virulence factors of clinical Trichoderma strains. This study was designed to examine the extracellular proteolytic enzymes of six clinical T. longibrachiatum isolates. Supernatants from induced liquid cultures of the examined strains were screened for proteolytic enzyme activities with 11 different chromogenic p-nitroaniline substrates. The production of trypsin-like, chymotrypsin-like and chymoelastase-like protease activities cleaving N-Benzoyl-L-Phe-L-Val-L-Arg-p-nitroanilide, N-Succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide,and N-Succinyl-L- Ala-L-Ala-L-Pro-L-Leu-p-nitroanilide, respectively, was common among the strains examined. Separation of trypsin- and chymotrypsin-like activities by column chromatography revealed, that both systems are complex consisting of several isoenzymes. The pH-dependence of these two protease systems was also studied. Based on the results, the different isoenzymes seem to have different optimal pH values. Extracellular proteolytic enzymes may be involved in the pathogenecity of Trichoderma strains as facultative human pathogens.
Cefditoren is the active form of cefditoren pivoxil, a new, broad-spectrum oral cephalosporin with strong in vitro activity against penicillin-susceptible and resistant Streptococcus pneumoniae. In this study, the minimum inhibitory concentrations (MICs) of cefditoren were determined for a special selection of S. pneumoniae isolates known to be susceptible, moderately susceptible or fully resistant to penicillin; these isolates originated from the lower respiratory tract of adults with pneumonia or the upper respiratory tract of children with or without symptoms of infection. Some of this latter group of isolates exhibited extremely high MICs to penicillin (³32 mg/l), whereas the MICs of cefditoren did not exceed 2 mg/l. The MIC50 and MIC90 of cefditoren proved to be 0.25 and 1.0 mg/l, respectively, with a range of MICs £0.015-2.0 mg/l for all the tested S. pneumoniae isolates. Its good activity suggests that cefditoren is expected to be a potent drug in infections caused by penicillin-resistant and multidrug-resistant S. pneumoniae.
The purpose of this study was to evaluate the Etest as an in vitro antifungal susceptibility test method for different moulds originating from human samples and from the environment. A total of 50 isolates (1 Acremonium, 18 Aspergillus, 2 Cladosporium, 1 Epicoccum, 15 Penicillium, 2 Scopulariopsis and 11 Trichoderma strains) were tested by the Etest. Forty-six of the tested moulds (92%) were resistant to fluconazole with minimal inhibitory concentrations (MICs) ³ 256 µg ml-1. There were strains resistant to ketoconazole among Aspergillus niger, A. ochraceus and Cladosporium spp. with MICs ? 32 µg ml-1. For fluconazole, no differences were observed using two different inocula, while for itraconazole, ketoconazole and amphotericin B, a 1 or less step 2-fold dilution difference in MIC was seen for the most of 10 selected strains. The MICs of fluconazole and amphotericin B obtained for Trichoderma strains by the Etest and the agar dilution method were also compared. MICs for fluconazole were in agreement, while MICs for amphotericin B were higher with 1 or 2 steps of 2-fold dilutions for most of Trichoderma strains in the case of the agar dilution method.
In order to identify a specific marker for T. harzianum AS12-2, a strain capable of controlling rice sheath blight caused by Rhizoctonia solani, UP-PCR was performed using five universal primers (UP) both separately and in pairwise combinations. The application of two UP primers resulted in the amplification of unique fragments from the genomic DNA of T. harzianum AS12-2, clearly distinguishing it from other Trichoderma strains. The unique fragments had no significant sequence homology with any other known sequence available in databases. Based on the sequences of the unique fragments, 14 oligonucleotide primers were designed. Two primer sets amplified a fragment of expected size from the DNA of strain T. harzianum AS12-2 but not from any other examined strains belonging to T. harzianum, to other Trichoderma species assayed, or to other common fungi present in paddy fields of Mazandaran province, Iran. In conclusion, SCAR (sequence characterized amplified regions) markers were successfully identified and rapid, reliable tools were provided for the detection of an effective biocontrol Trichoderma strain, which can facilitate studies of its population dynamics and establishment after release into the natural environment.