Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: L. Kuti x
  • Refine by Access: All Content x
Clear All Modify Search

Within a 300 x 600 m complex heterogeneous sodic grassland two techniques were compared for assessing soil salinity. The standard technique is based on repeated field instrumental measurements at 420 points. The alternative technique was performed with the use of numerical simulation of salt accumulation carried out on 3 profiles. These profiles have been selected as representatives of the distinct classes, or map strata of salt accumulation, distinguished with preliminary statistical clustering of the instrumental measuring points. Simulated values were extrapolated for the 3 strata distinguished. The maps obtained with the two techniques were statistically correlated. The use of numerical simulation is cost-effective. Further improvements are expected from a combination of improved numerical simulation and utilization of more strata.

Restricted access

In earlier studies the inheritance of chilling tolerance in maize was investigated using the joint scaling test on six genotypes forming a systematic genetic series - P1, P2, F1, F2, B1, B2. The values of some genotypes (P1, P2, F1) were overestimated by the model, while those of the other genotypes (F2, B1, B2) were underestimated. It was thought that this could be due to the effect of the level of heterozygosity in the female parent. The level of heterozygosity of the female parent in the P1, P2, F1 genotypes is 0%, while in the F2, B1, B2 genotypes it is 100%. In addition to the m, [d] and [h] parameters, a new parameter, [fh] (female heterozygosity) was thus introduced. Analysis carried out with the new model confirmed a significant female heterozygosity effect.

Restricted access

The storage of wheat data in computers began in the mid-eighties in Martonvásár, and was accompanied by the development of the first simple programs to assist the data management of routine breeding tasks. The great expansion of breeding materials and the demand for new applications have led to an enormous increase in the number of data and have made data processing increasingly more complicated. Data storage facilities and computer programs reflecting an outdated technological level were unable to keep pace with developments. Data storage and applications had to be redesigned on new lines to create a completely new information system amalgamating know-how from breeding and informatics.The paper introduces an extremely important part of this system: pedigree records, which contain the designations of all the genotypes included in traditional field breeding programmes and in the gene bank, together with crossing data, phenotypes and genomic data.An up-to-date, consistent pedigree register is one of the key components in the breeding information system, without which the maintenance and alteration of the names of plant species (wheat, barley, oats, etc.) and linking them to experiments and experimental quality data would be an extremely complex, time-consuming task. It would be even more difficult to keep track of all the genotypes and the increasingly large numbers of related lines from year to year.In addition to describing the rationale behind the system, details will be given on the tools and conditions required for the establishment of the pedigree records, and the internal and external sources available. Finally, some practical examples will be given of how the Martonvásár wheat breeding information system has been applied.

Restricted access

The widespread use of digitally-controlled measuring and analytical devices and electronic data collectors, all equipped with microprocessors and linked to computers, has made it possible for on-line data collection to become a routine process. A rational combination of two up-to-date techniques, barcodes and digital balance terminals, linked to an average computer background (Kuti et al., 2003), has proved in practice to satisfy the criteria raised for the up-to-date processing of breeding data at low cost. This system is an example of how it is possible to reduce costs while processing data more rapidly and reliably and allowing human resources to be utilised more flexibly and efficiently. The modules (MvLabel, MvSticker, MvWeighing)of the program package developed in Martonvásár for the handling and analysis of the data from plant breeding and crop production experiments can also be used independently for the identification of experimental field units (spikes, rows, plots) and for the online handling of weight measurements and analytical data. They provide a simple solution for the design and printing of labels (self-adhesive or plastic) containing barcodes. They make it easier to retrieve the data recorded by digital balance terminals and store them on hard discs, while also helping to unify and synchronise the various parts of the system using barcode readers to identify the measurement data.

Restricted access

Related to ongoing (re)forestation in the Great Hungarian Plain the short-term influence of changing land cover was studied on the grains of skeletal sandy soils. In three sampling areas with forest and grassy/arable control plots, the 0.1–0.2 mm grain size fraction of samples taken every 20 cm from the 0–100 cm sandy soil layer (totalling 22,509 grains) were separated and described with optical mineralogical microscope. In order to distinguish sand grains of forest-covered and control areas (grassland/arable land), the results of mineralogical and morphological observations were compared. It was revealed that the amount of feldspar grains is 8–9 times less than the amount of the quartz ones. The increase in the quartz/feldspar (q/fp) ratio is tied to the “consumption” of feldspars: the intense consumption of potassium by trees. Under the forest-covered fields, the number of in-situ crushed grains increased. Grains with etch pits are frequent in samples from the grasslands (except in Hajdúsámson). In samples of forest-covered areas a greatly increased number of brown grains with limonite and/or humus films were observed. The gained results can be useful in proving earlier land use in forested fields.

Restricted access

Genebanks are storage facilities designed to maintain the plant genetic resources of crop varieties (and their wild relatives) and to ensure that they are made available and distributed for use by plant breeders, researchers and farmers. The Martonvásár Cereal Genebank (MV-CGB) collection evolved from the working collections of local breeders and consists predominantly of local and regional materials. Established in 1992 by the Agricultural Research Institute of the Hungarian Academy of Sciences (Bedő, 2009), MVCGB with its over 10,000 accessions of the major species (Triticum, Aegilops, Agropyron, Elymus, Thinopyrum, Pseudoroegneria, Secale, Hordeum, Avena, Zea mays), became one of the approx. 80 cereal germplasm collections that exist globally. In Martonvásár breeding is underway on a number of cereal species, and large numbers of genotypes are tested each year in the field and under laboratory conditions. The increasing size of the research programmes assisted by a modern genebank background involve an enormous increase in the quantity of data that must be handled during research activities such as traditional breeding, pre-breeding and organic breeding. A computerized system is of primary importance to synchronize breeding and genebank activities, to monitor the quality and quantity of seed accessions in cold storage, to assist the registration of samples, and to facilitate characterization, regeneration and germplasm distribution.

Restricted access

An attempt is outlined for the compilation of an integrated and harmonized stratified soil physical database serving hydrologic modeling, as the basis of estimating soil hydraulic parameters in the unsaturated zone. Due to the appropriate spatial and thematic resolution and data processing status, the Digital Kreybig Soil Information System (DKSIS) and Hungarian Agrogeological Database (HAD) were chosen as pedological and agrogeological data sources for describing the soil physical properties in the unsaturated zone. The DKSIS contains legacy soil data (as hy, pH, salt, OM, CaCO 3 content, etc.) in finely stratified resolution (3–5 soil layers within 1.5–2.0 m), but lacks particle size data. HAD has a coarser stratification (8–15 layers within 8–10 m) with detailed particle size data. The five-cleft FAO texture classification can serve as an interface in their joint application. The particle size and hy data pairs from the existing Hungarian Soil Monitoring (TIM) network made it possible to define the relation between FAO texture class vs. hy value, and based on the HYPRES database each FAO texture class can be characterized by typical Mualem-van Genuchten parameter sets (Wösten et al., 1999). The compiled, harmonized database characterizes the distinguished soil and sediment layers – with a thickness of at least 10 cm – for a 690 km 2 large model area, describing their thickness and texture classes to the depth of the permanent groundwater level, in every single square kilometer cell of the model area. The compiled database is indispensable in the model simulation based analysis of regional water management problems like drought, flood and inland inundation.

Restricted access
Cereal Research Communications
Authors:
J. Bányai
,
P. Szűcs
,
I. Karsai
,
K. Mészáros
,
Cs. Kuti
,
L. Láng
, and
Z. Bedő

A total of 96 winter wheat ( Triticum aestivum L.) cultivars registered in Hungary were analysed using 15 wheat microsatellite markers located on different chromosome arms. Analyses revealed 91 SSR alleles with sizes ranging from 123–239 base pairs. The total number of alleles per locus ranged from 2 (Gwm664 and Gwm415) to 11 (Gwm219) with an average number of 6.1. The polymorphic information content (PIC) values ranged from 0.06 to 0.85 with an average number of 0.60 for all markers. Several markers included allele sizes characteristic of a single or a small number of cultivars. At most 9 SSR markers were required to distinguish the 96 cultivars, so the simple sequence repeats could serve as a relatively cheap, rapid method for identifying winter wheat cultivars.

Restricted access

In recent years an information system has been elaborated and constantly improved in Martonvásár, making it possible to handle the 3–4 million identification, observation, measurement, pedigree and other data generated for a total of almost 100,000 experimental plots each year. The extremely rapid development of biotechnology has made breeders interested in integrating molecular breeding methods into the conventional phenotype-pedigree system. The aim is to improve the competitiveness of breeding programmes through the intensive use of this new technology, with particular emphasis on determining how marker-assisted selection can be utilised. The present paper outlines not only a new data structure introduced to accommodate the new data elements of data categories such as gene sources, primer bank, primer combinations, markers, genes and alleles, but also data management tools and a standalone software interface to combine both molecular and phenotypic data. The integration of the molecular genomic data (GENETECH) with the information from the existing databases: pedigree (PEDIGREE), gene bank (GENEBANK) and germplasm exchange (GERMPEXCHG), ensures that biotechnological data generated at no little cost can be harnessed in ways that are important for breeders in decision-making. This is achieved through: (i) identification and centralization in uniform sources of the molecular data, and their matching with specific phenotypes, with special regard to those of importance for marker-assisted selection, (ii) integration and compliance with existing information system data, (iii) facilitation of decision-making based on the above (e.g. grouping of selection/crossing partners).

Restricted access