Search Results

You are looking at 1 - 10 of 31 items for

  • Author or Editor: L. Láng x
Clear All Modify Search

The seed multiplication of genetically modified (GM) plants requires a modification of the multiplication process used for conventional seed. The difference compared to conventionally-bred varieties involves the detection of the modified character during variety maintenance, seed multiplication and processing, the need for separate storage, processing and transportation, the extra cleaning required for the transportation, storage and processing equipment, and the extra administration necessary for the documentation and labelling of GM seed lots. All in all this results in the lower exploitation of seed-producing capacity and in additional costs. The appearance of GM plants also has an effect on the breeders and seed multipliers of conventional varieties, however, since the possibility of contamination cannot be excluded. The producers of seed free of GMs (within the tolerance threshold) are forced to employ costly cultivation techniques (temporal and spatial isolation, removal of volunteer plants) and laboratory tests (for GM contamination) if their varieties are to stay on the market and if it is to remain possible to produce GM-free products in the future.

Restricted access

In Hungary, stem rust epidemics caused by Puccinia graminis f. sp. tritici are rare, but due to the severity of infection the stem rust fungus can pose a great hazard to wheat production. As new virulent races can appear, it is important for breeders to know of the genetic background of the stem rust resistance in their cultivars. In this study, 220 winter wheat cultivars registered in Hungary in the past 35 years were investigated using molecular markers to determine the presence or absence and frequency of the two important stem rust resistance genes Sr31 and Sr36. The results indicated that both Sr31 and Sr36 genes are widespread in wheat cultivars registered in Hungary. Sr31 was detected in 24.1% of these wheats, and Sr36 in 15.9%. These genes occurred to a somewhat larger extent in the 156 local cultivars: one-third (32.1%) had the Sr31 and 18.0% the Sr36 gene. Of these, 2 cultivars (1.3%) had both genes (Sr31+ Sr36). Among the 64 foreign cultivars only 3 (4.7%) carried the Sr31 gene. In the foreign group, Sr36 was only detected in the seven Croatian cultivars. Tests also revealed possible false pedigrees for some cultivars. Inoculation tests showed that both genes were still effective. One-sixth (16.7%) of stem rust resistant cultivars did not carry the target genes indicating the possible presence of other efficient Sr genes. Data may help breeders to incorporate effective Sr genes into new cultivars.

Restricted access

The widespread use of digitally-controlled measuring and analytical devices and electronic data collectors, all equipped with microprocessors and linked to computers, has made it possible for on-line data collection to become a routine process. A rational combination of two up-to-date techniques, barcodes and digital balance terminals, linked to an average computer background (Kuti et al., 2003), has proved in practice to satisfy the criteria raised for the up-to-date processing of breeding data at low cost. This system is an example of how it is possible to reduce costs while processing data more rapidly and reliably and allowing human resources to be utilised more flexibly and efficiently. The modules (MvLabel, MvSticker, MvWeighing)of the program package developed in Martonvásár for the handling and analysis of the data from plant breeding and crop production experiments can also be used independently for the identification of experimental field units (spikes, rows, plots) and for the online handling of weight measurements and analytical data. They provide a simple solution for the design and printing of labels (self-adhesive or plastic) containing barcodes. They make it easier to retrieve the data recorded by digital balance terminals and store them on hard discs, while also helping to unify and synchronise the various parts of the system using barcode readers to identify the measurement data.

Restricted access

Central leader and vase form tree models were built using Finite Element Modelling (FEM). Their main characteristics were chosen to be the same. To get comparable results to real values, acceleration versus time curves of the two types of real trees were processed using FFT method to determine their natural frequencies. The natural frequencies measured on real trees and calculated for the models have shown good similarity. The models were virtually exposed to the effect of horizontal forced vibration in the frequency range of 0–20 Hz. Acceleration-frequency curves were calculated and drawn to find the best frequency values for the highest accelerations and also to see their differences in the limb. For the same purpose, the direction of shaking was also changed. It was found that for the central leader limb shape multidirectional shaking would bring uniform detachment, while for the vase form trees, even the unidirectional shakers are appropriate. Real trees were also shaken and their acceleration-frequency curves were compared with the values of the FEMs. The resultant good similarity proves the ability of the models. The acceleration values achieved in the vase form models were much higher than for the central leader type. The acceleration-frequency curve of the shaker unit can be used to find the best frequency for shaking.

Restricted access

Both resistance genes Lr19 and Lr24 originate from Agropyron elongatum . The gene Lr24 is derived from two different translocations: 1BS/3Ag (‘Amigo’) or 3DS/3Ag (‘Agent’). The use of molecular markers makes selection easier during the breeding process as well as in the selection of the parents. In this study, two markers were used to identify the gene Lr19 (GbF/R 130 , SCS265 512 ) and four different markers (J9/1-2 310 , SC-H5 700 , SCS1302 613 and SCS1326 607 ) were available to search for the gene Lr24 . The GbF/ R130 marker for gene Lr19 worked well, but the SCAR marker SCS265 512 proved to be easier to use in MAS. SCAR markers SCS1302 613 and SCS1326 607 proved to be highly reliable and effective for gene Lr24 not only in Agent-derived sources but also in ‘Amigo’ derivatives. The STS marker J9/1-2 310 and the SCAR marker SC-H5 700 required several modifications and were effective only in ‘Agent’ offsprings.

Restricted access
Restricted access

The storage of wheat data in computers began in the mid-eighties in Martonvásár, and was accompanied by the development of the first simple programs to assist the data management of routine breeding tasks. The great expansion of breeding materials and the demand for new applications have led to an enormous increase in the number of data and have made data processing increasingly more complicated. Data storage facilities and computer programs reflecting an outdated technological level were unable to keep pace with developments. Data storage and applications had to be redesigned on new lines to create a completely new information system amalgamating know-how from breeding and informatics.The paper introduces an extremely important part of this system: pedigree records, which contain the designations of all the genotypes included in traditional field breeding programmes and in the gene bank, together with crossing data, phenotypes and genomic data.An up-to-date, consistent pedigree register is one of the key components in the breeding information system, without which the maintenance and alteration of the names of plant species (wheat, barley, oats, etc.) and linking them to experiments and experimental quality data would be an extremely complex, time-consuming task. It would be even more difficult to keep track of all the genotypes and the increasingly large numbers of related lines from year to year.In addition to describing the rationale behind the system, details will be given on the tools and conditions required for the establishment of the pedigree records, and the internal and external sources available. Finally, some practical examples will be given of how the Martonvásár wheat breeding information system has been applied.

Restricted access

The effect of irrigation water on the yield and on individual yield components was examined for 19 durum wheat varieties by continually recording weather data and carrying out measurements on the moisture content, temperature, electrical conductivity and tension of the soil. Dry (rain-fed) and irrigated treatments were included in the experiment, which was carried out in the framework of the EU FP7-244374 DROPS project.During the rainless spring of 2011 the soil moisture content of the non-irrigated area dropped to 21–22 vol% and the effect of drought stress was still felt at harvest. The quantity of irrigation water applied during the growing season ensured normal conditions for generative development and a significant difference could be detected between the yield components in the two treatments. The thousand-kernel weight of the varieties was identical in the dry and irrigated plots, but in response to irrigation there was an increase in the number of grains per ear and the grain weight, and an improvement in fertilisation, resulting in higher yields.

Restricted access
Authors: B. Kőszegi, G. Linc, Lajos Juhász, L. Láng and M. Molnár-Láng

Acta Agronomica Hungarica, 48(3), pp. 227–236 (2000) OCCURRENCE OF THE 1RS/1BL WHEAT–RYE TRANSLOCATION IN HUNGARIAN WHEAT VARIETIES B. K Ő SZEGI, G. LINC, A. JUHÁSZ, L. LÁNG and M. MOLNÁR-LÁNG AGRICULTURAL RESEARCH INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, MARTONVÁSÁR, HUNGARY Received: August 15, 2000; accepted: October 15, 2000 The translocation which involves the substitution of the short arm of the 1R rye chromosome for the short arm of the 1B wheat chromosome by means of centric fusion has exercised an enormous influence on the world’s wheat breeding. Since the first mention of this translocation in 1937 the incidence of the 1RS/1BL translocation has been reported in connection with several hundred wheat varieties. Varieties carrying the translocation possess a chromosome segment which includes the resistance genes Sr31 (stem rust, Puccinia graminis), Lr26 (leaf rust, P. recondita), Yr9 (yellow rust, P. striiformis), Pm8 (powdery mildew, Erysiphe graminis) and Gb (aphid, Schizaphis graminum). The present paper investigates the occurrence of the 1RS/1BL translocation in wheat varieties bred in Hungary in recent years. It was found that 35 (53%) of the 66 Hungarian-bred wheat varieties registered in Hungary between 1978 and 1999 carried the 1RS/1BL translocation.

Restricted access

Genebanks are storage facilities designed to maintain the plant genetic resources of crop varieties (and their wild relatives) and to ensure that they are made available and distributed for use by plant breeders, researchers and farmers. The Martonvásár Cereal Genebank (MV-CGB) collection evolved from the working collections of local breeders and consists predominantly of local and regional materials. Established in 1992 by the Agricultural Research Institute of the Hungarian Academy of Sciences (Bedő, 2009), MVCGB with its over 10,000 accessions of the major species (Triticum, Aegilops, Agropyron, Elymus, Thinopyrum, Pseudoroegneria, Secale, Hordeum, Avena, Zea mays), became one of the approx. 80 cereal germplasm collections that exist globally. In Martonvásár breeding is underway on a number of cereal species, and large numbers of genotypes are tested each year in the field and under laboratory conditions. The increasing size of the research programmes assisted by a modern genebank background involve an enormous increase in the quantity of data that must be handled during research activities such as traditional breeding, pre-breeding and organic breeding. A computerized system is of primary importance to synchronize breeding and genebank activities, to monitor the quality and quantity of seed accessions in cold storage, to assist the registration of samples, and to facilitate characterization, regeneration and germplasm distribution.

Restricted access