Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: L. M. Nunes x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The kinetics of thermal decomposition of solid In(S2CNR2)3 complexes, (R=CH3, C2H5, n-C3H7,i-C3H7, n-C4H9 and i-C4H9), has been studied using isothermal and non-isothermal thermogravimetry. Superimposed TG/DTG/DSC curves show that thermal decomposition reactions occur in the liquid phase, except for the In(S2CNMe2)3 and In(S2CNPri 2)3 compounds.

Restricted access

Abstract

The number of citations received by authors in scientific journals has become a major parameter to assess individual researchers and the journals themselves through the impact factor. A fair assessment therefore requires that the criteria for selecting references in a given manuscript should be unbiased with regard to the authors or journals cited. In this paper, we assess approaches for citations considering two recommendations for authors to follow while preparing a manuscript: (i) consider similarity of contents with the topics investigated, lest related work should be reproduced or ignored; (ii) perform a systematic search over the network of citations including seminal or very related papers. We use formalisms of complex networks for two datasets of papers from the arXiv and the Web of Science repositories to show that neither of these two criteria is fulfilled in practice. By representing the texts as complex networks we estimated a similarity index between pieces of texts and found that the list of references did not contain the most similar papers in the dataset. This was quantified by calculating a consistency index, whose maximum value is one if the references in a given paper are the most similar in the dataset. For the areas of “complex networks” and “graphenes”, the consistency index was only 0.11–0.23 and 0.10–0.25, respectively. To simulate a systematic search in the citation network, we employed a traditional random walk search (i.e. diffusion) and a random walk whose probabilities of transition are proportional to the number of the ingoing edges of the neighbours. The frequency of visits to the nodes (papers) in the network had a very small correlation with either the actual list of references in the papers or with the number of downloads from the arXiv repository. Therefore, apparently the authors and users of the repository did not follow the criterion related to a systematic search over the network of citations. Based on these results, we propose an approach that we believe is fairer for evaluating and complementing citations of a given author, effectively leading to a virtual scientometry.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: A. G. Souza, I. P. Silva Filho, J. C. O. Santos, L. M. Nunes, I. M. G. Santos, L. E. B. Soledade, and M. M. Conceiçăo
Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: J. Botelho, A. Souza, L. Nunes, A. Chagas, I. Garcia dos Santos, M. da Conceição, and P. Dunstan

Abstract  

The standard molar enthalpies of formation of crystalline dialkyldithiocarbamates chelates, [Pd(S2CNR2)2], with R=C2H5, n-C3H7, n-C4H9 and i-C4H9, were determined through reaction-solution calorimetry in acetone, at 298.15 K. From the standard molar enthalpies of formation of the gaseous chelates, the homolytic (172.43.8, 182.53.2,150.93.1 and 162.63.1 kJ mol−1) and heterolytic (745.03.8, 803.73.3,834.33.1 and 735.23.0 kJ mol−1) mean palladium-sulphur bond-dissociation enthalpies were calculated.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Paula Nunes, Marília Bezerra, L. Costa, Juliana Cardoso, R. Albuquerque, M. Rodrigues, Gabriela Barin, Francilene da Silva, and A. Araújo

Abstract  

The purpose of this study was to evaluate the physical–chemical properties of collagen (CL) and usnic acid/collagen-based (UAC) films, using differential thermal analysis (DTA), thermogravimetry (TG/DTG), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Both films were prepared by casting process using polyethylene glycol 1500 (PEG 1500) as plasticizer. In the spectrum of UAC, similar bands of the usnic acid are observed, indicating that the polymerization (film formation) did not affect the stability of the drug. Distinctly, DTA curve of UAC did not show an endothermic peak at 201 °C, indicative that the drug was incorporated into the polymeric system. These results were corroborated by the scanning electron microscopy (SEM). The TG/DTG curves of UAC presented a different thermal decomposition profile compared to the individual compounds and CL. These findings suggest the occurrence of molecular dispersion or solubilization of the drug in the collagen film.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: V. A. Cardoso, L. M. Nunes, J. C. O. Santos, I. M. G. Santos, M. M. Conceiçăo, J. R. Santos Jr., and A. G. Souza
Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: M. R. Serafini, P. P. Menezes, L. P. Costa, C. M. Lima, L. J. Quintans Jr, J. C. Cardoso, J. R. Matos, J. L. Soares-Sobrinho, S. Grangeiro Jr, P. S. Nunes, L. R. Bonjardim, and A. A. S. Araújo
Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: M. R. Serafini, P. P. Menezes, L. P. Costa, C. M. Lima, L. J. Quintans Jr, J. C. Cardoso, J. R. Matos, J. L. Soares-Sobrinho, S. Grangeiro Jr, P. S. Nunes, L. R. Bonjadim, and A. A. S. Araújo

Abstract

In this investigation, the study of inclusion complexes formation between p-cymene and β-cyclodextrin using the methods of physical mixture, paste (PC) and slurry (SC), was evaluated. The results of DSC and TG/DTG showed that the products prepared by PC and SC methods were able to incorporate greater amounts of p-cymene, as evidenced by the weight loss of 7.15 and 3.97%, respectively, which occurred between 120 and 270 °C. SEM images showed decreased size of the household, especially in the SC product. The absorption bands in the IR spectrum, characteristic of p-cymene, were also identified in the preparations, indicating the presence of the compound in the complex.

Restricted access