Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: L. T. Liu x
Clear All Modify Search

In this study, the cDNA of homocysteine S-methyltransferase was isolated from Aegilops tauschii Coss., with the gene accordingly designated as AetHMT1. Similar to other methyltransferases, AetHMT1 contains a GGCCR consensus sequence for a possible zinc-binding motif near the C-terminal and a conserved cysteine residue upstream of the zinc-binding motif. Analysis of AetHMT1 uncovered no obvious chloroplast or mitochondrial targeting sequences. We functionally expressed AetHMT1 in Escherichia coli and confirmed its biological activity, as evidenced by a positive HMT enzyme activity of 164.516 ± 17.378 nmol min−1 mg−1 protein when catalyzing the transformation of L-homocysteine. Compared with the bacterium containing the empty vector, E. coli harboring the recombinant AetHMT1 plasmid showed much higher tolerance to selenate and selenite. AetHMT1 transcript amounts in different organs were increased by Na2SeO4 treatment, with roots accumulating higher amounts than stems, old leaves and new leaves. We have therefore successfully isolated HMT1 from Ae. tauschii and characterized the biochemical and physiological functions of the corresponding protein.

Restricted access

Summary

Harmaline and harmine accounted for more than 70% in composition in extracts of P. harmala. More attention, however, should be paid to the other alkaloids which would be favorable or unfavorable to the efficacy and safety of the products. It was necessary to determine these trace alkaloids in the extracts; thereafter, most of them have been characterized. Diglycoside vasicine, vasicine, vasicinone, harmalol, harmol, tetrahydroharmine, 8-hydroxy-harmine, ruine, harmaline, and harmine were separated and identified with reference substances and characteristic MS spectra in extracts by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and high-performance liquid chromatography (HPLC). Three trace alkaloids, vasicine, harmalol, and harmol were determined using the developed chromatographic separation method subsequently. The average contents of vasicine, harmalol, and harmol in extracts of ten batches were 2.53 ± 0.73, 0.54 ± 0.19, and 0.077 ± 0.03%, respectively. The total content of the three alkaloids was 3.23 ± 0.90% (from 1.81 to 4.48%). For rough estimation of all the relative alkaloids except of harmaline and harmine, the average total areas of all peaks in extracts varied from 4.35 to 26.64% detected at 220, 254, 265, 280, and 380 nm, respectively. The results indicated that area normalization method was powerless for the quality evaluation for traditional herb medicine consisting of numerous compounds with highly differential features. It might be concluded that LC-MS or HPLC could be utilized as a qualitative and quantitative analytical method for quality control of the extracts from seeds of P. harmala L.

Restricted access

Summary

Rapid high-performance liquid chromatographic methods with evaporative light scattering detection (HPLC-ELSD) and electrospray ionization multistage mass spectrometry (HPLC-ESI-MSn) have been established and validated for simultaneous qualitative and quantitative analysis of eight steroidal saponins in ten batches of Gongxuening capsule (GXN), a widely commercially available traditional Chinese preparation. The optimum chromatographic conditions entailed use of a Kromasil C18 column with acetonitrile-water (30:70 to 62:38, υ/υ) as mobile phase at a flow rate of 1.0 mL min−1. The drift tube temperature of the ELSD was 102°C and the nebulizing gas flow rate was 2.8 L min−1. Separation was successfully achieved within 25 min. LC-ESI-MSn was used for unequivocal identification of the constituents of the samples by comparison with reference compounds. The assay was fully validated for precision, repeatability, accuracy, and stability, then successfully applied to quantification of the eight compounds in samples. The method could be effective for evaluation of the clinical safety and efficacy of GXN.

Restricted access

As one of the world’s earliest domesticated crops, barley is a model species for the study of evolution and domestication. Domestication is an evolutionary process whereby a population adapts, through selection; to new environments created by human cultivation. We describe the genome-scanning of molecular diversity to assess the evolution of barley in the Tibetan Plateau. We used 667 Diversity Arrays Technology (DArT) markers to genotype 185 barley landraces and wild barley accessions from the Tibetan Plateau. Genetic diversity in wild barley was greater than in landraces at both genome and chromosome levels, except for chromosome 3H. Landraces and wild barley accessions were clearly differentiated genetically, but a limited degree of introgression was still evident. Significant differences in diversity between barley subspecies at the chromosome level were observed for genes known to be related to physiological and phenotypical traits, disease resistance, abiotic stress tolerance, malting quality and agronomic traits. Selection on the genome of six-rowed naked barley has shown clear multiple targets related to both its specific end-use and the extreme environment in Tibet. Our data provide a platform to identify the genes and genetic mechanisms that underlie phenotypic changes, and provide lists of candidate domestication genes for modified breeding strategies.

Restricted access

Abstract  

In terms of pre-safety assessment of a potential site for high-level radioactive wastes disposal in China, the geochemical behavior of key radionuclides which tend to be released from the repository must be thoroughly investigated. 99Tc is a long-lived fission product with appreciable productivity in nuclear fuel, and Tc (+7) has unlimited solubility in near-field geochemical environments. In this study, the effects of ionic strength and humic acid on 99TcO4 sorption and diffusion in Beishan granite were investigated with through-diffusion and batch sorption experiments. Results indicated that the effective diffusion coefficients (D e) of 99TcO4 in Beishan granite varied from 1.07 × 10−12 to 1.28 × 10−12 m2/s without change with ionic strength, while the distribution coefficients (K d) negatively correlated with ionic strength of the rock/water system. This study also indicates that there is no evident influence of humic acid concentration on the diffusion behavior of 99TcO4 in Beishan granite, due to the limited interaction between humic acid and 99TcO4 .

Restricted access

Summary

Formaldehyde in aquatic products was determined by micellar electrokinetic capillary chromatography (MEKC) after derivatization with 2,4-dinitrophenylhydrazine. Separation was carried out at 25 °C and 25 kV, using a fused silica capillary (75 µ internal diameter; 50.5 cm effective length) and an ultraviolet detector set at 360 nm. The optimal background electrolyte was 20 mM sodium tetraborate and 20 mM sodium dodecyl sulfate at pH 9.0 with 3 s hydrodynamic injection at 30 mbar. Electrophoretic analysis took approximately 6.5 min. The correlation coefficient of the calibration curve was 0.999 over the concentration range 2.0–100.0 mg L−1, and the LOD and LOQ values were 0.57 and 1.89 µg mL−1, respectively. The recoveries were from 83.7% to 97.2% with steam distillation as the sample pretreatment method.

Restricted access

Summary

A selective and sensitive liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) method was developed and validated for analysis of xanthotoxol (1), xanthotoxin (2), isoimpinellin (3), bergapten (4), oxypeucedanin (5), imperatorin (6), cnidilin (7), and isoimperatorin (8) in rat bile and urine using pimpinellin as an internal standard (IS). An Agilent 1200 liquid chromatography system (Agilent Technologies, USA) equipped with a quaternary pump, an autosampler, and a column compartment was used for all analyses. Chromatographic separations were performed on a Sapphire C18 column (150 mm × 4.6 mm, 5 μm), and the column temperature was maintained at 30°C; the sample injection volume was 10 μL. The specificity, linearity, accuracy, precision, recovery, matrix effect, and several stabilities were validated for all analytes in the rat bile and urine samples. The method was successfully applied in monitoring the concentrations of eight coumarins in rat bile and urine after a single oral administration of Radix Angelicae Dahuricae extract with a dosage of 8.0 mL/kg. In the bile samples, the eight coumarins excreted completely in twenty-four hours. The average percentages of coumarins (1–8) excreted were 0.045%, 0.019%, 0.177%, 0.105%, 0.337%, 0.023%, 0.024%, 0.021%. In the urine samples, the eight coumarins excreted completely in seventy-two hours. The average percentages of coumarins (1–8) excreted were 1.78%, 0.095%, 0.130%, 0.292%, 0.082%, 0.008%, 0.005%, 0.004%. The method is robust and specific and it can successfully complete the requirements of the excretion study of the eight coumarins in Radix Angelicae Dahuricae.

Restricted access

Abstract  

The molar heat capacity, C p,m, of a complex of holmium chloride coordinated with L-aspartic acid, Ho(Asp)Cl2·6H2O, was measured from 80 to 397 K with an automated adiabatic calorimeter. The thermodynamic functions H T-H 298.15 and S T-S 298.15 were derived from 80 to 395 K with temperature interval of 5 K. The thermal stability of the complex was investigated by differential scanning calorimeter (DSC) and thermogravimetric (TG) technique, and the mechanism of thermal decomposing of the complex was determined based on the structure and the thermal analysis experiment.

Restricted access

Abstract  

Methyl ethyl ketone peroxide (MEKPO) is an unstable material above certain limits of temperature, decomposing into chain reactions by radicals. The influence of runaway reactions on this basic characteristic was assessed by evaluating kinetic parameters, such as activation energy (E a), frequency factor (A), etc., by thermal activity monitor III (TAM III). This was done under three isothermal conditions of 70, 80, and 90 °C, with MEKPO 31 mass% combined with nitric acid (HNO3 6 N) and sodium nitrate (NaNO3 6 N). Nitric acid mixed with MEKPO gave the maximum heat of reaction (△H d) and also induced serious reactions in the initial stage of exothermic process under the three isothermal temperatures. The time to maximum rate (TMR) also decreased when HNO3 was mixed with MEKPO. Thus, MEKPO combined with HNO3 6 N forms a very hazardous mixture. Results of this study will be provided to relevant plants for alerting their staff on adopting best practices in emergency response or accident control.

Restricted access

Abstract  

As one 3-D coordination polymer, lead formate was synthesized; calorimetric study and thermal analysis for this compound were performed. The low-temperature heat capacity of lead formate was measured by a precise automated adiabatic calorimeter over the temperature range from 80 to 380 K. No thermal anomaly or phase transition was observed in this temperature range. A four-step sequential thermal decomposition mechanism for the lead formate was found through the DSC and TG-DTG techniques at the temperature range from 500 to 635 K.

Restricted access