Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: L. Verma x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

A series of substituted triphenylphosphane complexes of the type CdL2X2 (L= triorthotolylphosphane or trimetatolylphosphane; X=Cl, Br or I) and HgL2X2 (L=triphenylphosphane or triorthotolylphosphane) was prepared fresh. The thermal decomposition was carried out in air with heating rate programmed at 10�C min−1 and it revealed that the complexes with ortho derivative were less stable and the triphenylphosphane moiety leaves along with halogen in the first step. All the complexes were stable up to 210�C. However, the stability order of the tetrahedral complexes was X=Cl>Br. Values of n, E, lnA and ΔS # have been approximated and compared. Complexes having Br have higher E a, lnA and ΔS # values than that having Cl.

Restricted access

Abstract  

A series of ternary complexes of the types M2L′2L″2;ML′2L″2 (M=Fe, Cu, Zn; L′=2-oxocyclopentane dithiocarboxylate; L″=pyridine, morpholine) and CuL′2H2O was prepared afresh. Except the iron complex, all are dimer and complexation is through the dithio moiety of the ligand L′. Their thermal decomposition was carried out in air at heating rate 10°C min−1 and it revealed that the dehydration of the aqua complex follows the same path as the carboxylates and the pyridine complexes have the tendency to follow one-step decomposition. The copper complexes are less thermally stable. The overall thermal stability of the 2-oxocyclopentanedithiocarboxylato complexes of the three metals with the volatile ligands was found to be in the order: (CuLmorph)2< CuL2H2O<(CuLpy)2<(ZnLmorph)2<(ZnLpy)2<FeL2py2. The thermogravimetric properties of the complexes have been studied and the data were subjected to kinetic analysis. The values of n, E, A and ΔS# have been approximated and compared. Any formation of bridged structure is not indicated in the first step case.

Restricted access

Summary A comparative study of the non-isothermal decomposition of the dl-lactate hydrates of magnesium, calcium and strontium has been made with that of the dl-lactate hydrates chromium(III), manganese(II), iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) keeping dry air as the purge gas and the heating rate maintained at 10 K min-1. While the dl-lactates of manganese(II), cobalt(II) and copper(II) followed single step decomposition scheme suggesting that dehydration and decomposition steps overlapped, the dehydration steps of the other compounds were distinct. &-T plots of none of the dehydration steps showed any induction period, indicating no physical desorption, nucleation or branching. Neither the & max-values nor the onset temperatures of the dehydration steps did show any pattern. The TG data of the dehydration steps have also been analyzed using the Freeman-Carroll, Horowitz-Metzger, Coats-Redfern, Zsakó, Fuoss-Salyer-Wilson and Karkhanavala-Dharwadkar methods. Values of order of reaction, activation energy and Arrhenius factor have been approximated and compared. There are similarities in the activation energy values for the dehydration steps (< 60 kJ mol-1 in general). It is higher with group 2 metals and lower in transition metals (maximum in magnesium and lowest in chromium and iron lactates). In cases of overlapping of dehydration and decomposition steps, the activation energy values are on the lower side with the same trend (lower in cobalt and copper cases).

Restricted access

Abstract

Chromite Spinel materials were synthesized in this study by the citrate precursor method using four divalent cations (Ni2+, Co2+, Zn2+, and Cu2+). Citrate precursors consisting of mixed chromium citrates were first subjected to a thermogravimetric (TG) analysis for determining optimum temperatures for annealing. TG of coprecipitated chromium(III) citrate–zinc citrate gel has been carried out separately in N2 and O2 atmospheres. In both the cases, dehydration is followed by a four-step decomposition. The TG data were subjected to kinetic/mechanistic analysis, and the values of activation energy and Arrhenius factor were approximated. TG curves of various powders which were obtained on annealing at the two temperatures did exhibit thermal instability when carried out in N2 atmosphere. A large coercivity of 2701.01 Oe was observed for NiCr2O4 at 650 °C. On the basis of the results, 450 °C has been chosen for annealing treatment of the four gels. The samples were accordingly annealed at two different temperatures (450 and 650 °C) in a muffle furnace for 1 h in each case. The annealed powders were characterized using X-ray diffraction (XRD), SEM, and vibrating sample magnetometer (VSM). The XRD patterns show that annealing of CuCr2O4, NiCr2O4, and CoCr2O4 at 450 °C yields very small crystallites with poor Bragg reflections, although ZnCr2O4 samples show better peaks in XRD data. Annealing at 650 °C resulted in particle size range of 8–89 nm in the four cases. In the case of ZnCr2O4, the particle size was 8 nm.

Restricted access

Summary

An ecofriendly solvent polarity based microwave-assisted extraction (MAE) technique was developed for the rapid extraction and isolation of bioactive oleanolic acid from roots of Lantana camara L. Several different influential extraction parameters such as microwave power, extraction time, solvent type, and volume were studied in a systematic fashion for the determination of optimum extraction conditions. Simply modified and rapid high-performance liquid chromatography-diode array detector (HPLC-DAD) method was also developed and validated for quantitative determination of oleanolic acid from roots of L. camara. Under optimum conditions, using a mixture of CHCl3:MeOH (60:40, v/v, 15 mL) as a solvent, 600 W microwave powers, and 50 °C temperature for 6 min of MAE produced a maximum yield of 1.23% (dry weight of roots). No degradation of the target analyte was observed at the optimum conditions as evidenced from the recovery studies performed with standard oleanolic acid. The proposed method also showed high degree of reproducibility; hence, it may be useful for maximum extraction and isolation of biologically active oleanolic acid.

Full access

A purified alkaline thermo-tolerant bacterial lipase from Pseudomonas aeruginosa MTCC-4713 was immobilized on a poly (AAc-co-HPMA-cl-MBAm) hydrogel. The hydrogel-bound lipase achieved 93.6% esterification of ethanol and propionic acid (300 mM: 100 mM) into ethyl propionate at temperature 65oC in 3 h in the presence of a molecular sieve (3 Å). In contrast, hydrogel-immobilized lipase pre-exposed to 5 mM of HgCl2 orNH4Cl resulted in approximately 97% conversion of reactants in 3 h into ethyl propionate under identical conditions. The salt-exposed hydrogel was relatively more efficient in repetitive esterification than the hydrogel- bound lipase not exposed to any of the cations. Moreover, bound lipase exposed Hg2+ or NH4 + ions showed altered specificity towards p-nitrophenyl esters and was more hydrolytic towards higher C-chain p-nitrophenyl esters (p-nitrophenyl laurate and p-nitrophenyl palmitate with C 12 and C 16 chain) than the immobilized lipase not exposed to any of the salts. The later showed greater specificity towards p-nitrophenyl caprylate (C 8).

Restricted access

Abstract

Magnetic nanoparticles of cobalt ferrite have been synthesized by citrate precursor method. TG-DSC studies have been made to get the idea of the optimum temperature of annealing that could lead to the formation of nanoparticles. Annealing the citrate precursor was done at 450, 650, and 973 °C. The X-ray diffraction (XRD) studies and the scanning electron microscopy (SEM) have been used for characterization. The data from vibrating sample magnetometer and photoluminescence spectrometer (PL) have been analyzed for exploring their applications. Using the Scherrer formula, the crystallite size was found to be 25, 32, and 43 nm, respectively, using the three temperatures. The particle size increased with annealing temperature. Rietveld refinements on the X-ray (XRD) data were done on the cobalt ferrite nanoparticles (monoclinic cells) obtained on annealing at 650 °C, selecting the space group P2/M. The values of coercivity (1574.4 G) and retentivity (18.705 emu g−1) were found out in the sample annealed at 650 °C while magnetization (39.032 emu g−1) was also found in the sample annealed at 973 °C. The photoluminescence (PL) property of these samples were studied using 225, 330, and 350 nm excitation wavelength radiation source. The PL intensity was found to be increasing with the particle size.

Restricted access
European Journal of Microbiology and Immunology
Authors: P. Vidyasagar, V. Nimmagadda Sridevi PhD, S. Rajan, A. Praveen, A. Srikanth, G. Abhinay, V. Siva Kumar, R. R. Verma, and L. Rajendra

Abstract

Human papillomavirus (HPV) is the well-known second most cause of cervical cancer in women worldwide. According to the WHO survey, 70% of the total cervical cancers are associated with types HPV 16 and 18. Presently used prophylactic vaccine for HPV contains mainly capsid protein of L1 virus like particles (VLPs). Correct folding of VLPs and display of neutralizing epitopes are the major constraint for VLP-based vaccines. Further, monoclonal antibodies (mAbs) play a vital role in developing therapeutics and diagnostics. mAbs are also useful for the demonstration of VLP conformation, virus typing and product process assessment as well. In the present study, we have explored the usefulness of mAbs generated against sf-9 expressed HPV 16 VLPs demonstrated as type-specific and conformational dependent against HPV 16 VLPs by ELISA. High affinity and high pseudovirion neutralization titer of mAbs indicated their potential for the development of prophylactic vaccines for HPV. Also, the type-specific and conformational reactivity of the mAbs to HPV 16 VLPs in sf-9 cells by immunofluorescence assay proved their diagnostic potential.

Restricted access
Cereal Research Communications
Authors: S. L. Krishnamurthy, S. K. Sharma, D. K. Sharma, P. C. Sharma, Y. P. Singh, V. K. Mishra, D. Burman, B. Maji, B. K. Bandyopadhyay, S. Mandal, S. K. Sarangi, R. K. Gautam, P. K. Singh, K. K. Manohara, B. C. Marandi, D. P. Singh, G. Padmavathi, P. B. Vanve, K. D. Patil, S. Thirumeni, O. P. Verma, A. H. Khan, S. Tiwari, M. Shakila, A. M. Ismail, G. B. Gregorio, and R. K. Singh

Genotype × environment (G × E) interaction effects are of special interest for identifying the most suitable genotypes with respect to target environments, representative locations and other specific stresses. Twenty-two advanced breeding lines contributed by the national partners of the Salinity Tolerance Breeding Network (STBN) along with four checks were evaluated across 12 different salt affected sites comprising five coastal saline and seven alkaline environments in India. The study was conducted to assess the G × E interaction and stability of advanced breeding lines for yield and yield components using additive main effects and multiplicative interaction (AMMI) model. In the AMMI1 biplot, there were two mega-environments (ME) includes ME-A as CARI, KARAIKAL, TRICHY and NDUAT with winning genotype CSR 2K 262; and ME-B as KARSO, LUCKN, KARSA, GOA, CRRI, DRR, BIHAR and PANVE with winning genotypes CSR 36. Genotypes CSR 2K 262, CSR 27, NDRK 11-4, NDRK 11-3, NDRK 11-2, CSR 2K 255 and PNL 1-1-1-6-7-1 were identified as specifically adapted to favorable locations. The stability and adaptability of AMMI indicated that the best yielding genotypes were CSR 2K 262 for both coastal saline and alkaline environments and CSR 36 for alkaline environment. CARI and PANVEL were found as the most discernible environments for genotypic performance because of the greatest GE interaction. The genotype CSR 36 is specifically adapted to coastal saline environments GOA, KARSO, DRR, CRRI and BIHAR and while genotype CSR 2K 262 adapted to alkaline environments LUCKN, NDUAT, TRICH and KARAI. Use of most adapted lines could be used directly as varieties. Using them as donors for wide or specific adaptability with selection in the target environment offers the best opportunity for widening the genetic base of coastal salinity and alkalinity stress tolerance and development of adapted genotypes. Highly stable genotypes can improve the rice productivity in salt-affected areas and ensure livelihood of the resource poor farming communities.

Restricted access