Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: L. W. Beineke x
  • Refine by Access: All Content x
Clear All Modify Search
Periodica Mathematica Hungarica
K. S. Bagga
L. W. Beineke
G. Chartrand
, and
O. R. Oellermann
For an (r − 2)-edge-connected graphG (r ≥ 3) for orderp containing at mostk edge cut sets of cardinalityr − 2 and for an integerl with 0 ≤l ≤ ⌊p/2⌋, it is shown that (1) ifp is even, 0 ≤k ≤ r(l + 1) − 1, and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathop \sum \limits_{v \in V(G)} |\deg _G v - r|< r(2 + 2l) - 2k$$ \end{document}
, then the edge independence numberβ 1 (G) is at least (p − 2l)/2, and (2) ifp is odd, The sharpness of these results is discussed.
Restricted access