Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: L. Zhen x
  • All content x
Clear All Modify Search

Abstract  

Enthalpies of dilution at 298.15 K of aqueous solutions of THF and 1,4-dioxane have been determined using flow microcalorimetry. The results obtained were used to determine the homotactic enthalpic interaction coefficients that characterize pair interactions of THF and 1,4-dioxane in aqueous solution. These are briefly discussed from the point of view of intermolecular interaction between the hydrated solute species.

Restricted access
Acta Mathematica Hungarica
Authors: J. Cabrerizo, L. Fernández, M. Fernández, and Guo Zhen
Restricted access

Abstract  

The power–time curves of micellar formation of two anionic surfactants, sodium laurate (SLA) and sodium dodecyl sulfate (SDS), in N,N-dimethyl acetamide (DMA) in the presence of various long-chain alcohols (1-heptanol, 1-octanol, 1-nonanol and 1-decanol) were measured by titration microcalorimetry at 298 K. The critical micelle concentrations (CMCs) of SLA and SDS under various conditions at 298 K were obtained based on the power–time curves. Thermodynamic parameters (
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta H^\circ_{\text{mic}}$$ \end{document}
,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta S^\circ_{\text{mic}}$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta G^\circ_{\text{mic}}$$ \end{document}
) for micellar systems at 298 K were evaluated according to the power–time curves and the mass action model. The influences of the number of carbon-atom and the concentration of alcohol were investigated. Moreover, combined the thermodynamic parameters at 303, 308 and 313 K in our previous work and those of 298 K in the present work for SLA and SDS in DMA in the presence of long-chain alcohols, an enthalpy–entropy compensation effect was observed. The values of the enthalpy of micellization calculated by direct and indirect methods were made a comparison.
Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: L. Ji-zhen, F. Xue-zhong, H. Rong-zu, Z. Xiao-dong, Z. Feng-qi, and G. Hong-Xu

Abstract  

The thermal behavior of copper(II) 4-nitroimidazolate (CuNI) under static and dynamic states are studied by means of high-pressure DSC (PDSC) and TG with the different heating rates and the combination technique of in situ thermolysis cell with rapid-scan Fourier transform infrared spectroscopy (thermolysis/RSFTIR). The results show that the apparent activation energy and pre-exponential factor of the major exothermic decomposition reaction of CuNI obtained by Kissinger’s method are 233.2 kJ mol−1 and 1017.95 s−1, respectively. The critical temperature of the thermal explosion and the adiabatic time-to-explosion of CuNI are 601.97 K and 4.4∼4.6 s, respectively. The decomposition of CuNI begins with the split of the C-NO2 and C-H bonds, and the decomposition process of CuNI under dynamic states occurs less readily than those under static states because the dynamic nitrogen removes the strong oxidative decomposition product (NO2). The above-mentioned information on thermal behavior is quite useful for analyzing and evaluating the stability and thermal charge rule of CuNI.

Restricted access