Search Results

You are looking at 1 - 10 of 31 items for

  • Author or Editor: L.-Y. Hu x
  • All content x
Clear All Modify Search

Abstract  

To obtain a biodegradable polymer material with satisfactory thermal properties, higher elongation and modulus of elasticity, a new copolyester, poly(hexylene terephthalate-co-lactide) (PHTL), was synthesized via direct polycondensation from terephthaloyl dichloride, 1,6-hexanediol and oligo(lactic acid). The resulting copolyesters were characterized by proton nuclear magnetic resonance (1H NMR), differential scanning calorimetry (DSC), thermogravimetry (TG) and wide-angle X-ray scattering (WAXS). By using the relative integral areas of the dyad peaks in 1H NMR spectrum of copolyesters PHTL, the sequence lengths of the hexylene terephthalate and lactide units in the resultant copolyesters are 3.5 and 1.5, respectively. Compared to poly(hexylene terephthalate) (PHT), PHTL has lower T m but higher T g due to the incorporation of lactide unit into the main chains of copolyesters. The degradation test of copolyesters under a physiological condition shows that the degradability of PHTL is sped up due to incorporation of lactide segments.

Restricted access

Abstract  

The kinetics of the first order autocatalytic decomposition reaction of highly nitrated nitrocellulose (HNNC, 14.14%N) was studied by using thermogravimetry (TG). The results show that the TG curve for the initial 50% of mass-loss of HNNC can be described by the first order autocatalytic equation

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\frac{{{\text{d}}y}}{{dt}} = - 10^{16.4} \exp \left( { - \frac{{210380}}{{RT}}} \right)y - 10^{16.7} \exp \left( { - \frac{{171205}}{{RT}}} \right)y(1 - y)$$ \end{document}
and that for the latter 50% mass-loss of HNNC described by the reaction equations
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\frac{{dy}}{{dy}} = - 10^{16.3} \exp \left( { - \frac{{169483}}{{RT}}} \right)y\quad (n = 1)$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\frac{{dy}}{{dt}} = - 10^{16.8} \exp \left( { - \frac{{165597}}{{RT}}} \right)y^{2.61} \quad (n \ne 1)$$ \end{document}

Restricted access

Summary  

Electronic stopping power of 19F in Ni, Pd and Gd was measured and compared to Mstar and SRIM calculation as well as experimental results published in literature. It turns out that the present electronic stopping power agrees reasonably well with them.

Restricted access

Abstract  

Two methods for estimating the critical temperature (T b) of thermal explosion for the highly nitrated nitrocellulose (HNNC) are derived from the Semenov's thermal explosion theory and two non-isothermal kinetic equations, d/dt=Af()e–E/RT and d/dt=Af()[1+E/(RT)(1–T o/T)]e–E/RT, using reasonable hypotheses. We can easily obtain the values of the thermal decomposition activation energy (E), the onset temperature (T e) and the initial temperature (T o) at which DSC curve deviates from the baseline of the non-isothermal DSC curve of HNNC, and then calculate the critical temperature (T b) of thermal explosion by the two derived formulae. The results obtained with the two methods for HNNC are in agreement to each other.

Restricted access

In the past decade, researches on Wnt signaling in cell biology have made remarkable progress regarding our understanding of embryonic development, bone formation, muscle injury and repair, neurogenesis, and tumorigenesis. The study also showed that physical activity can reverse age-dependent decline in skeletal muscle, preventing osteoporosis, regenerative neurogenesis, hippocampal function, cognitive ability, and neuromuscular junction formation, and the age-dependent recession is highly correlated with Wnt signaling pathways. However, how the biological processes in cell and physical activity during/following exercise affect the Wnt signaling path of the locomotor system is largely unknown. In this study, we first briefly introduce the important features of the cellular biological processes of exercise in the locomotor system. Then, we discuss Wnt signaling and review the very few studies that have examined Wnt signaling pathways in cellular biological processes of the locomotor system during physical exercise.

Restricted access

Grains of 12 accessions of Triticum timopheevii (Zhuk.) Zhuk. ssp. timopheevii (AAGG, 2n = 4x = 28) and one bread wheat cultivar Chinese Spring (CS) and one durum wheat cultivar Langdon (LDN) grown across two years were analyzed for grain iron (Fe) and zinc (Zn) concentrations. All the 12 tested T. timopheevii ssp. timopheevii genotypes showed significantly higher concentration of grain Fe and Zn than CS and LDN. Aboundant genetic variability of both the Fe and Zn concentrations was observed among the T. timopheevii ssp. timopheevii accessions, averagely varied from 47.06 to 90.26 mg kg−1 and from 30.05 to 65.91 mg kg−1, respectively. Their grain Fe and Zn concentrations between years exhibited a significantly positive correlation with the correlation coefficients r = 0.895 and r = 0.891, respectively, indicating the highly genetic stability. Flag leaf possessed twice or three times higher concentrations for both Fe and Zn than grain, and a significantly high positive correlation appeared between the two organs with r = 0.648 for Fe and r = 0.957 for Zn concentrations, respectively, suggesting flag leaves might be indirectly used for evaluating grain Zn and Fe contents. Significant correlations occurred between grain Fe and Zn concentrations, and between grain Zn concentration and the two agronomic traits of plant height and number of spikelets per spike. Both the concentrations were not related to seed size or weight as well as NAM-G1 gene, implying the higher grain Fe and Zn concentrations of T. timopheevii ssp. timopheevii species are not ascribed to concentration effects of seed and the genetic control of NAM-G1 gene. There might be some other biological factors impacting the grain’s Zn and Fe concentrations. These results indicated T. timopheevii ssp. timopheevii species might be a promising genetic resource with high Fe and Zn concentrations for the biofortification of current wheat cultivars.

Restricted access

Biofortifying food crops with essential minerals would help to alleviate mineral deficiencies in humans. Detection of quantitative trait loci (QTLs) for mineral nutrient contents in rice was conducted using backcross inbred lines derived from an interspecific cross of Oryza sativa × O. rufipogon. The population was grown in Hangzhou and Lingshui, with the contents of Mg, Zn, Fe, Mn, Cu and Se in brown rice measured in both trials and that in milled rice tested in Hangzhou only. A total of 24 QTLs for mineral element contents were identified, including two for both the brown and milled rice, 17 for brown rice only, and five for milled rice only. All the seven QTLs detected for the mineral contents in milled rice and 13 of the 19 QTLs for the contents in brown rice had the enhancing alleles derived from O. rufipogon. Fifteen QTLs were clustered in seven chromosomal regions, indicating that common genetic-physiological mechanisms were involved for different mineral nutrients and the beneficial alleles could be utilized to improve grain nutritional quality by markerassisted selection.

Restricted access

Abstract  

The thermal decomposition of strontium acetate hemihydrate has been studied by TG-DTA/DSC and TG coupled with Fourier transform infrared spectroscopy (FTIR) under non-isothermal conditions in nitrogen gas from ambient temperature to 600°C. The TG-DTA/DSC experiments indicate the decomposition goes mainly through two steps: the dehydration and the subsequent decomposition of anhydrous strontium acetate into strontium carbonate. TG-FTIR analysis of the evolved products from the non-oxidative thermal degradation indicates mainly the release of water, acetone and carbon dioxide. The model-free isoconversional methods are employed to calculate the E a of both steps at different conversion α from 0.1 to 0.9 with increment of 0.05. The relative constant apparent E a values during dehydration (0.5<α<0.9) of strontium acetate hemihydrate and decomposition of anhydrous strontium acetate (0.5<α<0.9) suggest that the simplex reactions involved in the corresponding thermal events. The most probable kinetic models during dehydration and decomposition have been estimated by means of the master plots method.

Restricted access

In this paper, the wind energy resource in China’s oilfields is analyzed, the difference between China’s energy consumption structure and that of the world in average is analyzed as well, and the application prospect of wind heating technology in China’s oilfields is discussed as an example to reform China’s energy consumption structure. It shows that it is possible to use wind energy as an appropriate heat resource or supplementary heat source in some oilfields to supply heat energy for oil heating and living, more room to improve the energy resource utilization in various fields in China remain. It is a benefit to both oilfield and society to improve energy saving and environments.

Open access

Rht18, derived from Triticum durum (tetraploid) wheat, is classified as a gibberellic acid (GA)-responsive dwarfing gene. Prior to this study, the responses of Rht18 to exogenous GA on agronomic traits in hexaploid wheat were still unknown. The response of Rht18 to exogenous GA3 on coleoptile length, plant height, yield components and other agronomic traits were investigated using F4:5 and F5:6 hexaploid dwarf lines with Rht18 derived from two crosses between the tetraploid donor Icaro and tall Chinese winter wheat cultivars, Xifeng 20 and Jinmai 47. Applications of exogenous GA3 significantly increased coleoptile length in both lines and their tall parents. Plant height was significantly increased by 21.3 and 10.7% in the GA3-treated dwarf lines of Xifeng 20 and Jinmai 47, respectively. Compared to the untreated dwarf lines, the partitioning of dry matter to ears at anthesis was significantly decreased while the partitioning of dry matter to stems was significantly increased in the GA3-treated dwarf lines. There were no obvious changes in plant height and dry matter partitioning in the GA3-treated tall parents. Exogenous GA3 significantly decreased grain number spike–1 while it increased 1000-kernel weight in both the dwarf lines and tall parents. Thus, applications of exogenous GA3 restored plant height and other agronomic traits of Rht18 dwarf lines to the levels of the tall parents. This study indicated that Rht18 dwarf mutants are GA-deficient lines with impaired GA biosynthesis.

Restricted access