Search Results

You are looking at 1 - 10 of 39 items for

  • Author or Editor: L.Y. Xu x
  • All content x
Clear All Modify Search

Abstract  

The combustion energy of thioproline was determined by the precision rotating-bomb calorimeter at 298.15 K to be Δc U= –2469.301.44 kJ mol–1. From the results and other auxiliary quantities, the standard molar enthalpy of combustion and the standard molar enthalpy of formation of thioproline were calculated to be Δc H m θC4H7NO2S, (s), 298.15 K= –2469.921.44 kJ mol–1 and Δf H m θC4H7NO2S, (s), 298.15K= –401.331.54 kJ mol–1.

Restricted access

Summary

In the present paper, a simple and reliable high-performance liquid chromatography-diode array detection (HPLC-DAD) method was developed both for quantitative determination and fingerprint analysis of Agrimonia pilosa Ledeb for quality control. Under the optimized HPLC conditions, seven bioactive compounds including rutin, quercetin-3-rhamnoside, luteoloside, tiliroside, apigenin, kaempferol, and agrimonolide were determined simultaneously. For fingerprint analysis, 11 common peaks were selected as the characteristic peaks to evaluate the similarities of 16 different samples collected from different origins in China. Besides, hierarchical cluster analysis (HCA) was also performed to evaluate the variation of the raw materials. This is the first report of using a simple method for quality control of A. pilosa Ledeb through multi-component determination and chromatographic fingerprint analysis to the best of our knowledge.

Restricted access

Abstract  

Polyaniline/multi-walled carbon nanotube (PANI/MWNT) composites were prepared by in situ polymerization. Transmission electron microscope (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) were used to characterize the PANI/MWNT composites. Thermal stability and glass transition temperature (T g) were measured by thermogravimetry (TG) and temperature modulated differential scanning calorimetry (TMDSC), respectively. The TG and derivative thermogravimetry (DTG) curves indicated that with augment of MWNTs content, the thermal stability of PANI/MWNT composites increased continuously. While, T g increased and then decreased with the MWNTs content increasing from 0 to 20 mass%.

Restricted access

Abstract  

Polyaniline/α-Al2O3 (PANI/α-Al2O3) composites were synthesized by in situ polymerization through ammonium persulfate ((NH4)2S2O8, APS) oxidized aniline using HCl as dopant. XRD and FTIR were used to characterize the PANI/α-Al2O3 composites. The thermal stabilities and glass transition temperature (T g) of PANI/α-Al2O3 composites were tested using thermogravimetric (TG) method and modulated differential scanning calorimetry (MDSC) technique. The results of TG showed that the thermal stability of PANI/α-Al2O3 composite increased and then decreased with the increase in α-Al2O3 content. The derivative thermogravimetry (DTG) curves showed one step degradation of PANI when the α-Al2O3 content was lower than 52.5 mass%, and exhibited two steps degradation when the α-Al2O3 content was higher than 63.6 mass%. The MDSC curves showed that the T g of PANI/α-Al2O3 composites increased and then decreased with the augment of α-Al2O3 for the interaction between PANI chains and the surface of α-Al2O3.

Restricted access

Abstract

High-performance liquid chromatography with a hydrophilic-interaction liquid chromatographic (HILIC) column has been successfully used to retain and separate the polar phosphonic herbicides glyphosate and glufosinate. Online electrospray tandem ion-trap mass spectrometric and DAD detection were used. The effects on the separation of mobile phase acetonitrile content, buffer concentration, and flow rate, and of column temperature, were investigated. With UV-visible detection at 195 nm, LOQ were <850 mg kg−1, showing the method is suitable for product quality control of these herbicides alone or in combination. Tandem mass spectrometric conditions were optimized for ion-trap detection. Quantification was by use of selected reaction monitoring transitions m/z 168 → 150 in negative-ion mode for glyphosate and m/z 182 → 136 in positive-ion mode for glufosinate. Limits of detection (LOD; S/N > 3) were 0.20 and 0.16 ng for glyphosate and glufosinate, respectively, and the respective limits of quantification (LOQ; S/N = 10) were 0.02 and 0.05 mg kg−1. Sample derivatization was not necessary to achieve low detection limits in residue analysis in this study. Recovery from watermelon, spinach, potato, tomato, radish-root, and water fortified with the herbicides ranged from 63.6 to 107.3% and relative standard deviations were <15.3%.

Restricted access

Abstract  

Conducting polyaniline/Cobaltosic oxide (PANI/Co3O4) composites were synthesized for the first time, by in situ deposition technique in the presence of hydrochloric acid (HCl) as a dopant by adding the fine grade powder (an average particle size of approximately 80 nm) of Co3O4 into the polymerization reaction mixture of aniline. The composites obtained were characterized by infrared spectra (IR) and X-ray diffraction (XRD). The composition and the thermal stability of the composites were investigated by TG-DTG. The results suggest that the thermal stability of the composites is higher than that of the pure PANI. The improvement in the thermal stability for the composites is attributed to the interaction between PANI and nano-Co3O4.

Restricted access

Abstract  

In this study, the thermal stability of sisal in cycle process was investigated between room temperatures and 600°C in various conditions (in air, in composites, in argon) by thermogravimetry and mechanical testing measurement. The results indicated that the thermal stability of sisal was worse in air before five times of thermal cycles, but after the five times thermal stability of sisal in composites was better. In different conditions of same cycles process, the thermal stability of sisal was different. With increasing of thermal cycles times, the max. load (is the maximum strength in stress-strain curve) of sisal fiber showed downtendency in different conditions and decreased most obviously in composites.

Restricted access

Summary

A simple and rapid method, using online ultraperformance liquid chromatography with photodiode array detection and electrospray ionization mass spectrometry (UPLC-PDA-eλ-ESI-MS/MS), was developed for the in-depth analysis of 50 batches Radix et Rhizoma Rhei. The analysis was performed on a UPLC BEH C18 column using a gradient elution system. Baseline separation could be achieved in less than 7.5 min. At the same time, on the basis of the 50 batches of samples collected from representative cultivated regions, a novel chromatographic fingerprint was devised by UPLC-PDA, in which 27 common peaks were detected and identified by the developed UPLC-MS/MS method step by step according to fragmentation mechanisms, MS/MS data, standards, and relevant literature. Many active components gave prominent [M - H] ions in the ESI mass spectra. These components include anthraquinones, sennosides, stilbenes, glucose gallates, naphthalenes, and catechins. Furthermore, based on the information of these Radix et Rhizoma Rhei components, and further combined with discriminant analysis, a novel discriminant analysis equation (DAE) was established for the quality control of Radix et Rhizoma Rhei for the first time.

Restricted access

Abstract  

A novel method that spent nuclear fuel is converted into nitrates with N2O4, and then nitrates are extracted with TBP in supercritical CO2 (SC-CO2), has been developed for reprocessing of spent nuclear fuel, which has a potential prospect because of its potential to decrease generation of the secondary liquid waste. In this paper, conversion of Nd2O3 with N2O4 into its nitrate under various conditions and extraction of the conversion product with TBP in SC-CO2 were investigated. When temperature was 60–120 °C, the molar ratio of H2O to Nd2O3 was from 1 to 6, and molar ratio of N2O4 to Nd2O3 was above 8, complete conversion of Nd2O3 into its nitrate was achieved. The conversion product was characterized by thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) and Raman spectroscopy. Quantitative extraction of the conversion product with TBP in supercritical CO2 was also achieved under experimental conditions.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: L. Xu, Y. De-Jun, L. Qiang-Guo, L. Ai-Tao, Y. Li-Juan, J. Qian-Hong, and L. Yi

Abstract  

The product from reaction of samarium chloride hexahydrate with salicylic acid and Thioproline, [Sm(C7H5O3)2·(C4H6NO2S)]·2H2O, was synthesized and characterized by IR, elemental analysis, molar conductance, and thermogravimetric analysis. The standard molar enthalpies of solution of [SmCl3·6H2O(s)], [2C7H6O3(s)], [C4H7NO2S(s)] and [Sm(C7H5O3)2·(C4H7NO2S)·H2O(s)] in a mixed solvent of absolute ethyl alcohol, dimethyl sulfoxide(DMSO) and 3 mol L−1 HCl were determined by calorimetry to be Δs H m Φ[SmCl3 δ6H2O (s), 298.15 K]= −46.68±0.15 kJ mol−1 Δs H m Φ[2C7H6O3 (s), 298.15 K]= 25.19±0.02 kJ mol−1, Δs H m Φ[C4H7NO2S (s), 298.15 K]=16.20±0.17 kJ mol−1 and Δs H m Φ[Sm(C7H5O3)2·(C4H6NO2S)]·2H2O (s), 298.15 K]= −81.24±0.67 kJ mol−1. The enthalpy change of the reaction

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$SmCl_3 \cdot 6H_2 O(s) + 2C_7 H_6 O_3 (s) + C_4 H_7 NO_2 S(s) = Sm(C_7 H_5 O_3 )_2 \cdot (C_4 H_6 NO_2 S) \cdot 2H_2 O(s) + 3HCl(g) + 4H_2 O(1)$$ \end{document}
((1)) was determined to be Δs H m Φ =123.45±0.71 kJ mol−1. From date in the literature, through Hess’ law, the standard molar enthalpy of formation of Sm(C7H5O3)2(C4H6NO2S)δ2H2O(s) was estimated to be Δs H m Φ[Sm(C7H5O3)2·(C4H6NO2S)]·2H2O(s), 298.15 K]= −2912.03±3.10 kJ mol−1.

Restricted access