Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Lhoussain El Fadil x
  • Refine by Access: All Content x
Clear All Modify Search


Let K = ℚ(α) be a number field generated by a complex root α of a monic irreducible polynomial f(x) = x 24m, with m ≠ 1 is a square free rational integer. In this paper, we prove that if m ≡ 2 or 3 (mod 4) and m ≢∓1 (mod 9), then the number field K is monogenic. If m ≡ 1 (mod 4) or m ≡ 1 (mod 9), then the number field K is not monogenic.

Restricted access