Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Li-jun Xu x
  • Refine by Access: All Content x
Clear All Modify Search
Journal of Thermal Analysis and Calorimetry
Authors:
Cheng-Li Jiao
,
Li-Fang Song
,
Chun-Hong Jiang
,
Jian Zhang
,
Xiao-Liang Si
,
Shu-Jun Qiu
,
Shuang Wang
,
Li-Xian Sun
,
Fen Xu
,
Fen Li
, and
Ji-Jun Zhao

Abstract

The low-temperature molar heat capacity of crystalline Mn3(HEDTA)2·10H2O was measured by temperature-modulated differential scanning calorimetry (TMDSC) for the first time. The thermodynamic parameters such as entropy and enthalpy relative to 298.15 K were calculated based on the above molar heat capacity data. The compound was characterized by powder XRD, FT-IR spectrum. Moreover, the thermal decomposition characteristics of Mn3(HEDTA)2·10H2O were investigated by thermogravimetry–mass spectrometer (TG–MS). The experimental result through TG measurement shows that a three-step mass loss process exists. H2O, CO2, NO, and NO2 were observed as products for oxidative degradation of Mn3(HEDTA)2·10H2O from the MS curves.

Restricted access

Abstract  

A rapid separation system based on SISAK technique was established to isolate 142La successfully from fission products. SISAK technique is often applied in the separation of nuclides with the half-life of seconds or minutes. Here it was used to separate the parent nuclide of 142La, which the half-life is in the magnitude of several seconds. According to the separation procedure designed in the paper, the activity of 142La acquired is more than 104 Bq and the decontamination factors for most γ-emitters are higher than 103.

Restricted access

Exploring antibiotic resistant mechanism by microcalorimetry

Determination of thermokinetic parameters of metallo-β-lactamase L1 catalyzing penicillin G hydrolysis

Journal of Thermal Analysis and Calorimetry
Authors:
Hui-Zhou Gao
,
Qi Yang
,
Xiao-Yan Yan
,
Zhu-Jun Wang
,
Ji-Li Feng
,
Xia Yang
,
Sheng-Li Gao
,
Lei Feng
,
Xu Cheng
,
Chao Jia
, and
Ke-Wu Yang

Abstract

In an effort to probe the reaction of antibiotic hydrolysis catalyzed by B3 metallo-β-lactamase (MβL), the thermodynamic parameters of penicillin G hydrolysis catalyzed by MβL L1 from Stenotrophomonas maltophilia were determined by microcalorimetric method. The values of activation free energy ΔG θ are 88.26, 89.44, 90.49, and 91.57 kJ mol−1 at 293.15, 298.15, 303.15, and 308.15 K, respectively, activation enthalpy ΔH θ is 24.02 kJ mol−1, activation entropy ΔS θ is −219.2511 J mol−1 K−1, apparent activation energy E is 26.5183 kJ mol−1, and the reaction order is 1.0. The thermodynamic parameters reveal that the penicillin G hydrolysis catalyzed by MβL L1 is an exothermic and spontaneous reaction.

Restricted access

Abstract

A rapid and simple method for the determination of stearic acid and 12-hydroxystearic acid in PEG-60 hydrogenated castor oil by high performance liquid chromatography with evaporative light scattering detection was established. The oil sample was first pretreated by alkaline hydrolysis. The analysis was performed on a Zhongpu Develop XD-C18 column (250 mm × 4.6 mm, 5 µm) with gradient elution of methanol and 1% acetic acid aqueous solution at a flow rate of 1.2 mL·min−1 and a column temperature of 40 °C. The drift tube temperature of the evaporative light scattering detection system was set at 40 °C, and the pressure of carrier gas (N2) was 337 kPa. The regression equation revealed a good linear relation (r = 0.9993–0.9995) during the test ranges (119.1–1190.7 μg·mL−1 for 12-hydroxystearic acid, 10.7–107.4 μg·mL−1 for stearic acid). The detection limits of 12-hydroxystearic acid and stearic acid were 1.1 and 2.5 μg·mL−1, the limits of quantitation were 3.2 and 7.4 μg·mL−1, respectively. And the mean recoveries were 101.5 and 101.0%, the corresponding relative standard deviations (RSDs) were 2.1 and 2.8%, respectively. The RSDs corresponding to repeatability (n = 6) were both less than 1.7% in terms of precision. As to the stability, the test results remained stable after 8 h at room temperature (RSDs were both less than 2.6%). The developed method showed high sensitivity, recovery, repeatability and stability, which indicated that the method could be applied as a quality evaluation method for the determination of stearic acid and 12-hydroxyoctadecanoic acid in PEG-60 hydrogenated castor oil.

Open access
Journal of Thermal Analysis and Calorimetry
Authors:
L. Xu
,
Y. De-Jun
,
L. Qiang-Guo
,
L. Ai-Tao
,
Y. Li-Juan
,
J. Qian-Hong
, and
L. Yi

Abstract  

The product from reaction of samarium chloride hexahydrate with salicylic acid and Thioproline, [Sm(C7H5O3)2·(C4H6NO2S)]·2H2O, was synthesized and characterized by IR, elemental analysis, molar conductance, and thermogravimetric analysis. The standard molar enthalpies of solution of [SmCl3·6H2O(s)], [2C7H6O3(s)], [C4H7NO2S(s)] and [Sm(C7H5O3)2·(C4H7NO2S)·H2O(s)] in a mixed solvent of absolute ethyl alcohol, dimethyl sulfoxide(DMSO) and 3 mol L−1 HCl were determined by calorimetry to be Δs H m Φ[SmCl3 δ6H2O (s), 298.15 K]= −46.68±0.15 kJ mol−1 Δs H m Φ[2C7H6O3 (s), 298.15 K]= 25.19±0.02 kJ mol−1, Δs H m Φ[C4H7NO2S (s), 298.15 K]=16.20±0.17 kJ mol−1 and Δs H m Φ[Sm(C7H5O3)2·(C4H6NO2S)]·2H2O (s), 298.15 K]= −81.24±0.67 kJ mol−1. The enthalpy change of the reaction

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$SmCl_3 \cdot 6H_2 O(s) + 2C_7 H_6 O_3 (s) + C_4 H_7 NO_2 S(s) = Sm(C_7 H_5 O_3 )_2 \cdot (C_4 H_6 NO_2 S) \cdot 2H_2 O(s) + 3HCl(g) + 4H_2 O(1)$$ \end{document}
((1)) was determined to be Δs H m Φ =123.45±0.71 kJ mol−1. From date in the literature, through Hess’ law, the standard molar enthalpy of formation of Sm(C7H5O3)2(C4H6NO2S)δ2H2O(s) was estimated to be Δs H m Φ[Sm(C7H5O3)2·(C4H6NO2S)]·2H2O(s), 298.15 K]= −2912.03±3.10 kJ mol−1.

Restricted access

Abstract  

The complex from reaction of neodymium chloride six-hydrate with salicylic acid and 8-hydroxyquinoline, Nd(C7H5O3)2·(C9H6NO), was synthesized and characterized by IR, elemental analysis, molar conductance, and thermogravimatric analysis. The standard molar enthalpies of solution of [NdCl3·6H2O(s)], [2C7H6O3(s)], [C9H7NO(s)] and [Nd(C7H5O3)2·(C9H6NO)(s)] in a mixed solvent of anhydrous ethanol, dimethyl formamide (DMF) and perchloric acid were determined by calorimetry at 298.15 K. Based on Hess’ law, a new chemical cycle was designed, and the enthalpy change of the reaction

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$NdCl_3 \cdot 6H_2 O(s) + 2C_7 H_6 O_3 (s) + C_9 H_7 NO(s) = Nd(C_7 H_5 O_3 )_2 \cdot (C_9 H_6 NO)(s) + 3HCl(g) + 6H_2 O(l)$$ \end{document}
((1)) was determined to be Δr H m Θ=117.89±0.37 kJ mol−1. From data in the literature, through Hess’ law, the standard molar enthalpy of formation of Nd(C7H5O3)2·(C9H7NO)(s) was estimated to be Δf H m Θ[Nd(C7H5O3)2·(C9H6NO)(s), 298.15 K]=−2031.80±8.6 kJ mol−1.

Restricted access