Search Results

You are looking at 1 - 10 of 53 items for

  • Author or Editor: Liang Wang x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Owing to some discussions about manipulating impact factor by requesting authors to increase their citations to the publication journal, we theoretically establish a mathematical expression of a relation between the journal self-citation rate and its impact factor by the single-factor method in this paper. Based on self-citation data of some journals in JCR and the observed relation between journal impact factor and the self-cited rate, we analyze the possibility that journal editors manipulate impact factors of their journals by raising the self-cited rate. Finally, we make some suggestions for supervising this crude way of active manipulating the impact factor.

Restricted access

Abstract  

Herein, hydroxyapatite (HAP) was prepared by aqueous precipitation technique and was characterized by using FT-IR and XRD to determine its chemical functional groups and micro-structure. The removal of cobalt from aqueous solution to HAP was studied by batch technique as a function of various environmental parameters such as contact time, pH, ionic strength, foreign ions, fulvic acid (FA), and temperature under ambient conditions. The results indicated that the sorption of Co(II) on HAP was strongly dependent on pH and ionic strength. The presence of FA enhanced the sorption of Co(II) on HAP at low pH, whereas reduced Co(II) sorption on HAP at high pH. The Langmuir, Freundlich and D-R models were used to simulate the sorption isotherms at three different temperatures of 303.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature dependent sorption isotherms indicated that the sorption process of Co(II) on HAP was spontaneous and endothermic. The sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The results suggest that the HAP is a suitable material in the preconcentration and solidification of Co(II) from large volumes of aqueous solutions.

Restricted access

Abstract  

The study was undertaken to evaluate the feasibility of oxidized multiwalled carbon nanotube (oxidized MWCNT) for the removal of radiocobalt (60Co) from aqueous solutions. The oxygen functional groups of oxidized MWCNT were characterized by FT-IR and XPS. Batch experiments were performed to study the sorption of cobalt as a function of contact time, solid contents, pH, ionic strength, foreign ions, and temperature. Two kinetic models viz. pseudo-first-order and pseudo-second-order were used to determine kinetic sorption parameters, and the kinetic sorption could be described more favorably by the pseudo-second-order model. The thermodynamic parameters (∆G°, ∆S°, ∆H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on oxidized MWCNT was an endothermic and spontaneous processes. The results suggest that oxidized MWCNT can be used efficiently in the treatment of industrial effluents containing radioactive and heavy metal ions.

Restricted access

Abstract  

This study examined the applications of novel non-polymer magnetic ferrite nanoparticles (Fe3O4 NPs) labeled with 99mTc-pertechnetate (99mTcO4 ). The radiochemistry, chemistry, and biodistribution of Fe3O4 NPs labeled with 9mTcO4 were analyzed. This paper employed instant thin layer chromatography and magnetic adsorption to evaluate the labeling efficiency and stability of 99mTc-Fe3O4 at various reaction conditions. A scanning electron microscope, X-ray diffractometer, Fourier transform infrared spectrometer, laser particle size analyzer, and superconducting quantum interference device magnetometer were used to analyze the physical and chemical properties of the Fe3O4 and 99Tc-Fe3O4 nanoparticles. The biodistribution and excretion of 99mTc-Fe3O4 were also investigated. Radiochemical analyses showed that the labeling efficiency was over 92% after 1 min in the presence of a reducing agent. Hydroxyl and amine groups covered the surface of the Fe3O4 particles. Therefore, 99Tc (VII) reduced to lower oxidation states and might bind to Fe3O4 NPs. The sizes of the 99Tc-Fe3O4 NPs were about 600 nm without ultrasound vibrations, and the particle sizes were reduced to 250 nm under ultrasound vibration conditions. Nonetheless, Fe3O4 NPs and 99Tc-Fe3O4 NPs exhibited superparamagnetic properties, and the saturation magnetization values were about 55 and 47 emu/g, respectively. The biodistribution showed that a portion of the 99mTc-Fe3O4 nanoparticles might embolize in a pulmonary capillary initially; the embolism radioactivity was cleared from the lungs and was then taken up by the liver. 99mTc-Fe3O4 metabolized very slowly only 1–2% of the injected dose (ID) was excreted in urine and about 2.37% ID/g was retained in the liver 4 h after injection. Radiopharmaceutically, 99mTc-Fe3O4 NPs displayed long-term retention, and only 99mTc-Fe3O4 NPs that dissociated to free pertechnetate could be excreted in urine. This research evaluated the feasibility of non-polymer magnetic ferrite NPs labeled with technetium as potential radiopharmaceuticals in nuclear medicine.

Restricted access

Abstract  

The sorption of radionuclide 63Ni(II) on bentonite/iron oxide magnetic composites was investigated by batch technique under ambient conditions. The effect of contact time, solid content, pH, coexistent electrolyte ions, fulvic acid, and temperature on Ni(II) sorption to bentonite/iron oxide magnetic composites was examined. The results demonstrated that the sorption of Ni(II) was strongly dependent on pH and ionic strength at pH <8.0, and was independent of pH and ionic strength at high pH values. The sorption of Ni(II) was dominated by outer-sphere surface complexation or ion exchange at low pH, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The experimental data were well fitted by Langmuir model. The thermodynamic parameters (∆G°, ∆S°, ∆H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Ni(II) on bentonite/iron oxide magnetic composites was an endothermic and spontaneous processes. The results show that bentonite/iron oxide magnetic composites are promising magnetic materials for the preconcentration and separation of radionickel from aqueous solutions in environmental pollution.

Restricted access

Abstract  

According to the definition of reliability-based citation impact factor (R-impact factor) proposed by KUO & RUPE and the cumulative citation age distribution model, a mathematical expression of the relationship between R-impact factor and impact factor is established in this paper. By simulation of the change processes of the R-impact factor and impact factor in the manipulation process of the impact factor, it is found that the effect of manipulation can be partly corrected by the R-impact factor in some cases. Based on the Journal Citation Report database, impact factors of 4 normal journals and 4 manipulated journals were collected. The journals’ R-impact factors and self-cited rates in the previous two years were calculated for each year during the period 2000 to 2007, and various characteristics influenced by the manipulation were analyzed. We find that the R-impact factor has greater fairness than the impact factor for journals with relatively short cited half-lives. Finally, some issues about using the R-impact factor as a measure for evaluating scientific journals are discussed.

Restricted access
Restricted access

Abstract  

A statistical analysis is made of two data sets and it is found that the distribution of major scientific and technological achievements in terms of the age of those achievement makers is Weibull distribution. Pearson'sx 2 test results are satisfactory. This finding holds for different centuries, different nations and different disciplines.

Restricted access

Abstract  

Organic–inorganic hybrid composites of epoxy and phenyltrisilanol polyhedral oligomeric silsesquioxane (Ph7Si7O9(OH)3, POSS-triol) were prepared via in situ polymerization of epoxy monomers. The nanocomposites of epoxy with POSS-triol can be prepared in the presence of metal complex latent catalyst, aluminum triacetylacetonate ([Al]) for the reaction between POSS-triol and diglycidyl ether of bisphenol A (DGEBA). The dispersion morphology of organic–inorganic hybrid was characterized by scanning electronic microscopy (SEM). The thermostability of composites was evaluated by thermal gravimetric (TG) analysis. The flammability was evaluated by cone calorimeter test. The presence of [Al] latent catalyst leads to a decrease in combustion rate with respect to epoxy and epoxy/POSS composites as well as reduction in smoke, CO and CO2 production rate. The effect of [Al] is to reduce the size of spherical POSS particles from 3–5 μm in epoxy/POSS to 0.5 μm in epoxy/POSS[Al]. Furthermore, POSS with smaller size may form compact and continue char layer on the surface of composites more efficiently.

Restricted access

Abstract

In this paper, we use bibliometric methods and social network analysis to analyze the pattern of China–US scientific collaboration on individual level in nanotechnology. Results show that Chinese–American scientists have been playing an important role in China–US scientific collaboration. We find that China–US collaboration in nanotechnology mainly occurs between Chinese and Chinese–American scientists. In the co-authorship network, Chinese–American scientists tend to have higher betweenness centrality. Moreover, the series of polices implemented by the Chinese government to recruit oversea experts seems to contribute a lot to China–US scientific collaboration.

Restricted access