Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Liu Yongping x
Clear All Modify Search

Abstract  

This paper concerns the problems of the average widths and the optimal recovery of the anisotropic H�lder classesW r H α(R d) of smooth functions defined on the Euclidean spaceR d in the metricC k(R d). The weak asymptotic behavior is established for the corresponding quantities.

Restricted access

Summary  

In recent years, with the attention to the radial-basis function by mathematicians, more and more research is concentrated on the Gaussian cardinal interpolation. The main purpose of this paper is to discuss the asymptotic behavior of Lebesgue constants of the Gaussian cardinal interpolation operator ℒλ from l (ℤ) into L (ℝ), that is, ∥ℒλ1. We obtain the strong asymptotic estimate of the Lebesgue constants which improves the results of Riemenschneider and Sivakumar in [11].

Restricted access

Abstract  

In this paper, in order to consider the problems of relative width on ℝd, we proposed definitions of relative average width which combine the ideas of the relative width and the average width. We established the smallest number M which make the following equality

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\overline K _\sigma (U(W_2^\alpha ),M(W_2^\alpha ),L_2 ({\mathbb{R}}^d )) = \overline d _\sigma (U(W_2^\alpha ),L_2 ({\mathbb{R}}^d ))$$ \end{document}
hold, where U(W 2 α) is the Riesz potential or Bessel potential of the unit ball in L 2(ℝk) and the notations
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\overline K _\sigma$$ \end{document}
(·, ·,L 2(ℝd)) and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\overline d _\sigma$$ \end{document}
(·, L 2(ℝd)) denote respectively the relative average width in the sense of Kolmogorov and the average width in the sense of Kolmogorov in their given order. In 2001, Subbotin and Telyakovskii got similar results on the relative width of Kolmogorov type. We also proved that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\overline K _\sigma (U(W_2^\alpha ) \cap B(L_2 (\mathbb{R}^d )),U(W_2^\beta ) \cap B(L_2 (\mathbb{R}^d ))L_2 (\mathbb{R}^d )) = \overline d _\sigma (U(W_2^\alpha ),L_2 (\mathbb{R}^d )),$$ \end{document}
where 0 × β × α.

Restricted access