Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Luísa Amaral x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The standard (p 0=0.1 MPa) molar enthalpy of formation, Δf H m 0(l)=169.8±2.6 kJ mol−1, of the liquid 3-bromoquinoline was derived from its standard molar energy of combustion, in oxygen, to yield CO2(g), N2(g) and HBr·600H2O(l), at T=298.15 K, measured by rotating bomb combustion calorimetry. The Calvet high temperature vacuum sublimation technique was used to measure the enthalpy of vaporization of the compound, Δ1 g H m 0=70.7±2.3 kJ mol−1. These two thermodynamic parameters yielded the standard molar enthalpy of formation, in the gaseous phase, at T=298.15 K, Δf H m 0(g)=240.5±3.5 kJ mol−1.

Restricted access

Abstract  

The standard (p o = 0.1 MPa) molar enthalpies of formation
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $${{\Updelta}}_{\text{f}} H_{\text{m}}^{\text{o}} ( {\text{l),}}$$ \end{document}
of the liquid 2-methylfuran, 5-methyl-2-acetylfuran and 5-methyl-2-furaldehyde were derived from the standard molar energies of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The Calvet high temperature vacuum sublimation technique was used to measure the enthalpies of vaporization of the three compounds. The standard (p o = 0.1 MPa) molar enthalpies of formation of the compounds, in the gaseous phase, at T = 298.15 K have been derived from the corresponding standard molar enthalpies of formation in the liquid phase and the standard molar enthalpies of vaporization. The results obtained were −(76.4 ± 1.2), −(253.9 ± 1.9), and −(196.8 ± 1.8) kJ mol−1, for 2-methylfuran, 5-methyl-2-acetylfuran, and 5-methyl-2-furaldehyde, respectively.
Restricted access