Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: M Bielik x
  • Refine by Access: All Content x
Clear All Modify Search

The contribution contains of the geophysical data and their interpretation. Interpretation of geophysical fields in compliance with the geological structure and geodynamics EMO far region contributes significantly to development of  seismo-tectonic model. The model represents the correlation between seismic activity and geological-tectonic setting. The achieved seismo-tectonic model in fact reasons all recorded seismic events in the area and points out to a seismic activity decrease towards the Danube Basin center,  thereof, there being situated the EMO locality.

Restricted access

Geophysical methods are important tools for the investigation of the structure and geodynamic development of the lithosphere. The central and eastern parts of the Western Carpathians are bordered in the north by a thicker  and stronger lithosphere of the European platform (100-150  km), which is underthrust (about of 50 km) beneath the margin of the overriding Carpathian orogen. This thickening is interpreted as remnants of subducted slabs. In contrast, the “thin” lithosphere at the western margin of the Western Carpathians can be considered as a result of oblique collision along a deep-seated transform zone between the platform and orogenic lithosphere. Neo-Alpine “soft” collision and retreating subduction of this orogen can also be discovered by means of quantitative interpretation of observed gravity field. The crustal thickness in the Western Carpathians ranges among 27-35 km. The central Western Carpathians are characterized by thicker crust (30-55 km) in comparison with thinner crust (25-30 km) in the Pannonian Basin System. This feature is probably the result of the youngest lithosphere processes from the Middle Miocene. Rheological properties of the Western Carpathian lithosphere show that the mechanical strengths decrease within the whole lithosphere from the area of the European platform via the Western Carpathians to the Pannonian Basin. The most remarkable and important first-order tectonic structures (seismo-tectonic zones) in  the Western Carpathians are the zones of the Pieniny Klippen Belt, the Mur-Mürz-Leitha fault zone, the Čertovica fault zone and the Hurbanovo line. Map of neo-Alpine fault systems and neotectonic regions (blocks) of  Slovakia was defined.

Restricted access
Acta Geodaetica et Geophysica Hungarica
Authors: M. Bielik, Z. Alasonati-Tašárová, H. Zeyen, J. Dérerová, J. Afonso, and K. Csicsay

Our paper presents the general overview of the current geophysical results, which helps to improve the geophysical image and the lithospheric structure of the Carpathian-Pannonian Basin region. Two different geophysical methods have been applied for the study of the structure and composition of the lithosphere as well as for determination of the lithospheric thermal structure. Firstly, integrated 2D modeling of gravity, geoid, topography and surface heat flow data was performed. Secondly, based on the results of the CELEBRATION 2000 seismic experiment, a large-scale 3D lithospheric gravity model was developed. The resulting map of the lithospheric thickness shows important variations in lithospheric thickness across the chain as well as along strike of the Carpathian arc. The sediment stripped gravity map is characterized by minima in the Eastern Alps and Western Carpathians. The maxima are observed in the Pannonian Back-arc Basin system, Bohemian Massif, Fore-Sudetic Monocline, Bruno-Silesian unit (BSU), Lublin Trough and partly in the Holy Cross Mts. and Malopolska unit. The Western Carpathian gravity minimum is a result of the interference of two main gravity effects. The first one comes from the lowdensity sediments of the Outer Western Carpathians and Carpathian Foredeep. The second one is due to the thick low-density upper and middle crust, reaching up to 25 km. The sediment stripped anomaly in the Pannonian Back-arc Basin system is characterized by gravity high that is a result of the gravity effect of the anomalously shallow Moho. The most dominant feature of the complete stripped gravity map is the abrupt change of the positive anomalies along the Pieniny Klippen Belt zone. The complete residual anomaly of the Pannonian Back-arc Basin system and the Western Carpathian orogen is characterized by a long-wavelength gravity low. The lowest values are associated with the thick low-density upper and middle crust of the Inner Western Carpathians. The European Platform is characterized by significantly denser crust with respect to the less dense crust of the microplates ALCAPA and Tisza-Dacia. That is why we suggest that the European platform represents consolidated, while the Carpathian-Pannonian Basin region un-consolidated crust.

Restricted access