Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: M. Üveges x
  • Refine by Access: All Content x
Clear All Modify Search


Human milk (HM) of healthy, well-nourished, lactating mothers is a unique and ideal source of nutritive factors, like hormones, cytokines, chemokines, growth factors that ensures the proper growth and development of infants. Among the main components of HM, fat is an important energy source and a regulatory factor. The quality of milk fat depends on its fatty acid (FA) composition. Gas chromatography coupled with flame ionisation detection is one of the most common methods for analysis of the FA profile of HM. The aim of this study was to evaluate the FA composition of HM, collected from mothers with different health conditions (normal Body Mass Index (nBMI); overweight and obese) using GC-FID method. The results showed that saturated FAs were present in the highest amount in the HM samples, of which palmitic acid was the main representative. The major monounsaturated FA was oleic acid, while linoleic acid was the most abundant of the polyunsaturated FAs (PUFA). Overweight and obese women have lower levels of PUFA in their breast milk. The data were subjected to principal component and quadratic discriminant analysis (QDA). QDA classified nBMI and overweight and obese mother milk samples with 88.24% accuracy. Significant differences were found between normal and overweight and obese HM samples in case of C10:0 and C18:3 FAs. Higher maternal BMI was associated with a higher n-6/n-3 PUFA ratio.

Open access
Acta Biologica Hungarica
T. Kucserka
Kata Karádi-Kovács
M. Vass
G. Selmeczy
Katalin Hubai
Viktória Üveges
I. Kacsala
N. Törő
, and
Judit Padisák

The aim of the study was to estimate the breakdown of the allochthonous litter in an artificial stream running in an agricultural area and compare it with the same values following a toxic mud spill into the same stream. Litter bags were filled with three types of leaves (Quercus robur, Populus tremula and Salix alba) and placed to the bottom of the river. Ergosterol was used to detect fungal biomass. We supposed the absence of fungi and the retardation of leaf litter decomposition. Only pH and conductivity increased significantly. Leaf mass loss after the catastrophe was much slower than in 2009 and the decay curves did not follow the exponential decay model. Prior to the catastrophe, leaf mass loss was fast in Torna, compared to other streams in the area. The reason is that the stream is modified, the bed is trapezoid and covered with concrete stones. Fungal biomass was lower, than in the pre-disaster experiment, because fungi did not have enough leaves to sporulate. Leaf mass loss followed the exponential decay curve before the disaster, but after that it was possible only after a non-change period.

Restricted access