Search Results
You are looking at 1 - 8 of 8 items for
- Author or Editor: M. Dong x
- Refine by Access: All Content x
The wheat storage proteins, especially the high molecular weight glutenin subunits (HMW-GS), play important roles in the determination of flour processing and bread-making quality. Compared with the traditional SDS-PAGE method, reversed-phase high-performance liquid chromatography (RP-HPLC) was shown to have many advantages for the separation and characterization of HMW-GS because of its high resolving power, repeatability and automation. In this work, HMW-GS from bread and tetraploid wheats were separated and characterized by RP-HPLC. The elution time ranking of different HMW-GS was: 1Ax > 1Bx > 1Dx > 1By > 1Dy. Several subunit pairs associated with good quality properties and those with similar mobilities on SDS-PAGE, such as 1Bx7 and 1Bx7*, 1By8 and 1By8*, 1Dx2 and 1Ax2*, 1Bx6 and 1Bx6.1, were well separated and readily identified through RP-HPLC. However, other subunit pairs, such as 1Dy10 — 1Dy12, 1Dx5 — 1By18 and 1Dx2 — 1By16, could not be adequately separated and identified by RP-HPLC, whereas they displayed different mobilities on SDS-PAGE gels. Because 1Dx5 and 1Dx2 showed different hydrophobicities, RP-HPLC could distinguish 1Dx5 + 1Dy10 and 1Dx2 + 1Dy12. A comparative analysis between RP-HPLC and SDS-PAGE showed that a combination of both methods provided more effective identification of HMW-GS in wheat quality improvement and germplasm screening.
A micellar high-performance liquid chromatography (HPLC) method has been described for simultaneous determination of ephedrine, pseudoephedrine, and methylephedrine in Ephedra Herb and two traditional Chinese preparations. The separation and determination of ephedrine, pseudoephedrine, and methylephedrine were performed using a mobile phase containing 1.75 × 10−1 mol·L−1 sodium dodecyl sulphate and 0.02 mol·L−1 potassium hydrogen phosphate with 10% (v/v) methanol at pH 3.0, running at 1.5 mL·min−1 by a Venusil XBP C18 (250 × 4.6 mm, 5 μm) column at 40 °C. The detected wavelength was set at 210 nm. The method was validated according to the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines. The main analytical parameters were linearity (r > 0.9990), intra- and inter-day precisions (relative standard deviation [RSD %], 0.33–1.63, and RSD %, 1.26–2.20, respectively), limit of quantifications [LOQs], and limit of detections [LODs] (2.6 × 10−4 and 7.8 × 10−5 mg·mL−1 for ephedrine, 6.8 × 10−4 and 2.0 × 10−4 mg·mL−1 for pseudoephedrine, and 5.0 × 10−4 and 1.5 × 10−4 mg·mL−1 for methylephedrine). RSDs of recoveries were <5.5% in the three samples. Based on the optimized chromatographic conditions and the eluted orders, a model of separation mechanism for the analytes was established. The results indicated that the proposed method was an accurate, “green” and cheap method.
Abstract
A microcalorimeter (Setaram c-80) was used to study the thermokinetics of the hydration process of calcium phosphate cement (CPC), a biocompatible biomaterial used in bone repair. The hydration enthalpy was determined to be 35.8 J g–1 at 37.0°C when up to 80 mg CPC was dissolved in 2 mL of citric buffer. In the present study, parameters related to time constants of the calorimeter were obtained by fitting the recorded thermal curves with the function θ=Ae–?t(1– e–?2t). The real thermogenetic curves were then retrieved with Tian function and the transformation rate of the hydration process of CPC was found to follow the equation α=1–[1–(0.0075t)3]3. The microstructures of the hydrated CPC were examined by scanning electron microscopy. The nano-scale flake microstructures are due to crystallization of calcium phosphate and they could contribute to the good biocompatibility and high bioactivity.
Abstract
The distribution coefficients,K d of 36 elements from Na to Bi on a silica were determined at pH 4, 7, 9 and in the absence and presence of fulvic acid (FA) using a multitracer technique. The multitracer solution was prepared by irradiation of Th(NO3)4 with 40Ar ion beam. The effects of pH and fulvic acid on the K d values of 36 elements were studied. It was found that the sequences of the K d values of alkali elements (Cs>Rb>K>Na) and of alkaline earth elements(Ba>Ca>Mg) in the absence of FA can be qualitatively explained in terms of chemical bond formation and hydration. Various effects of pH and the negative or positive effect of FA on the adsorption of 36 elements were observed and are probably related to the species of 36 elements in the aqueous solutions containing CO3 2–, OH–, Cl– and FA. For most of the elements studied here the K d values are increased with increasing pH and are decreased with adding FA.
Abstract
By substututing99Mo for the Mo in the reconstituted MoFe protein, the nuclear quadrupole interactions (NQI) of99Mo have been measured using the perturbed angular correlations (PAC). Two well-defined electric quadrupole interaction parameters have been observed. The configuration of the M-Center of the MoFe protein is identified by the quadrupole couplign constant Q1(412(9)MHz) and the asymmetry parameter 1(0.49(5)). Other parameters, VQ2(1939(13)MHz) and 1(0.90(1)), may correspond to a deformation M—Center of MoFe protein.
Rod-shaped nanocrystals are formed by self assembly of t -Bu-phenyl substituted tetra(carboxamido)perylenes (BPP) in different solvents. The structure and the dimensions of the nano-rods may be controlled by the choice of the hydrogen-bond accepting capacity of the solvent (DMSO, DMF, DMAc, HMPA), by the concentration and by the composition of solvent-mixture (by adding hydrogen-bond donating solvents), but is independent of the surface used for their deposition (mica, silicon, gold, glass). The different forms of aggregation were examined by AFM and SNOM and were correlated to UV-Vis absorption spectra of the aggregates in solution. The orientation of the transition dipole moment of the molecules in the nanocrystals has been determined by polarized fluorescence microscopy and, in combination with the crystal structure of the t -Bu substituted analogue of BPP, is used to develop a model for the internal molecular structure of the rod shaped aggregates.
Abstract
Nattokinase (NK) is effective in the prevention and treatment of cardiovascular disease. Cucumber is rich in nutrients with low sugar content and is safe for consumption. The aim of this study was to construct a therapeutic cucumber that can express NK, which can prevent and alleviate cardiovascular diseases by consumption. Because the Bitter fruit (Bt) gene contributes to bitter taste but has no obvious effect on the growth and development of cucumber, so the NK-producing cucumber was constructed by replacing the Bt gene with NK by using CRISPR/Cas9. The pZHY988-Cas9-sgRNA and pX6-LHA-U6-NK-T-RHA vectors were constructed and transformed into Agrobacterium tumefaciens EHA105, which was transformed into cucumber by floral dip method. The crude extract of NK-producing cucumber had significant thrombolytic activity in vitro. In addition, treatment with the crude extract significantly delayed thrombus tail appearance, and the thrombin time of mice was much longer than that of normal mice. The degrees of coagulation and blood viscosity as well as hemorheological properties improved significantly after crude extract treatment. These findings show that NK-producing cucumber can effectively alleviate thrombosis and improve blood biochemical parameters, providing a new direction for diet therapy against cardiovascular diseases.
Abstract
Conversion of economic microcrystalline cellulose (MCC) into high value-added prebiotic glucans, is not only stimulates utilisation of renewable lignocellulosic biomass, but also provides cheap prebiotics to reduce high incidence of obesity and metabolic syndrome. Herein, glucans (C0.25–C0.50–C1.00) from MCC were prepared by pre-impregnation with dilute sulphuric acid (0.25–0.50–1.00%) and ball-milling treatment for 1 h. NMR spectroscopy and gel-permeation chromatography of the glucan products showed a significant reduction in the degree of polymerisation (DP) and molecular weights (Mw). All prepared glucans improved gut stress evaluated by in vitro digestion and fermentation (young and aging mouse faecal inocula). C1.00 with lower DP and Mw showed better water solubility, earlier peak, and exhibited increased 1-diphenyl-2-picrylhydrazyl activity, higher ratios of Lactobacillus to Escherichia coli, and a higher level of short chain fatty acids better than C0.25 and C0.50 treatment (P < 0.05). Better prebiotic effects were observed in aging mice than in young mice. The highest ratio of Lactobacillus to E. coli was a 2.13-fold increase for aging mice compared to a 1.79-fold increase for young mice, relative to the initial value after C1.00 treatment. The study provides a novel pathway and a new resource for producing glucan.