Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: M. Grahovac x
  • Refine by Access: All Content x
Clear All Modify Search

The surplus of waste glycerol, by-product of the biodiesel production process, is available at the global market. Some species of the genera Streptomyces have the ability to assimilate glycerol and convert it into valuable metabolic products. In the present study, the ability of Streptomyces hygroscopicus to assimilate waste glycerol and convert it into metabolic compounds with antifungal activity against four phytopathogenic fungi obtained from apple fruit samples expressing rot symptoms, was investigated. Production of antifungal metabolites by S. hygroscopicus was carried out in 3 l stirred tank bioreactor through 7 days. Fermentation was carried out at 27 °C with aeration rate of 1.5 vvm and agitation rate of 100 r.p.m. The aim of this work was to analyse bioprocess parameters and to determine at which stage of bioprocess the production of antifungal metabolites occurs. Activity of the cultivation liquid on two isolates of Alternaria alternata and two isolates of Fusarium avenaceum were determined every 12 h using in vitro well diffusion method. It was found that the maximum production of antifungal metabolites occurred at 108 hour of cultivation. Formed inhibition zones have shown that the produced antifungal metabolites have high efficacy on tested phytopathogenic fungi (inhibition zone diameter higher than 35 mm for all test organisms).

Open access
Acta Alimentaria
Authors:
J. A. Grahovac
,
Z. Z. Rončević
,
I. Ž. Tadijan
,
A. I. Jokić
, and
J. M. Dodić

Bacillus subtilis is one of the most important producers of diverse antimicrobial compounds. This bacterium grows and produces antibiotics on different substrates. The increase of the antibiotics yield can be achieved by changing the conditions of cultivation and the composition of the culture media. In this study, response surface methodology was used for optimization of glycerol, sodium nitrite, and phosphate content in media for production of antibiotics effective against Staphylococcus aureus. As biosynthesis strain Bacillus subtilis ATCC 6633 was used. The developed model predicts that the maximum inhibition zone radius (38.08 mm) against Staphylococcus aureus and minimal amount of residual nutrients (glycerol 1.75 g l−1, nitrogen 0.21 g l−1, phosphorus 0.18 g l−1) are achieved, when the initial content of glycerol, sodium nitrite, and phosphate are 49.99 g l−1, 1.00 g l−1, and 5.00 g l−1, respectively.

Restricted access