Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: M. Gregor x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

The carboxylato–Cu(II) complexes of type [Cu2(RCOO)4] and their benzothiazole adducts [Cu2(RCOO)4bt2] (bt = benzothiazole, R = CH3(CH2)n−2, n = 12, 14, 16, 18) form the main objectives of this study. The studied carboxylato–Cu(II) complexes are formed from dimeric units to polymeric chains (chromofor CuO5). The structural changes are due to coordination of ligand (benzothiazole). The polymeric chains of carboxylato–Cu(II) complexes degraded to discrete centrosymetric tetracarboxylate-bridged dimmers (chromofor CuO4N). These prepared compounds [Cu2(RCOO)4] and [Cu2(RCOO)4L2] were submitted to measurements relating to spectral (IR, UV–Vis) and thermal properties (TG, DTA, DSC).

Restricted access
Journal of Flow Chemistry
Authors: Hanspeter Sprecher, M. Nieves Pérez Payán, Michael Weber, Goekcen Yilmaz, and Gregor Wille

Abstract

The synthesis and utilisation of acyl azides in a flow apparatus combined with an automated extraction unit is described. This process safely provides multi-100 g quantities of a labile diacyl azide (3) as an intermediate that could not be generated safely by classic batch methods. Its subsequent conversion to the desired amine (4) represents an example for process intensification. The same set-up with an output capacity of >30 g/h was used for the unattended synthesis of benzoyl azide as the final product in solution (tert-butyl methyl ether (TBME), 0.5 M).

Restricted access

Abstract

Metal ions are integral parts of pro- as well as eukaryotic cell homeostasis. Escherichia coli proved a valuable in vitro model organism to elucidate essential mechanisms involved in uptake, storage, and export of metal ions. Given that E. coli Nissle 1917 is able to overcome murine colonization resistance, we generated several E. coli Nissle 1917 mutants with defects in zinc, iron, copper, nickel, manganese homeostasis and performed a comprehensive survey of the impact of metal ion transport and homeostasis for E. coli colonization capacities within the murine intestinal tract. Seven days following peroral infection of conventional mice with E. coli Nissle 1917 strains exhibiting defined defects in zinc or iron uptake, the respective mutant and parental strains could be cultured at comparable, but low levels from the colonic lumen. We next reassociated gnotobiotic mice in which the microbiota responsible for colonization resistance was abrogated by broad-spectrum antibiotics with six different E. coli K12 (W3110) mutants. Seven days following peroral challenge, each mutant and parental strain stably colonized duodenum, ileum, and colon at comparable levels. Taken together, defects in zinc, iron, copper, nickel, and manganese homeostasis do not compromise colonization capacities of E. coli in the murine intestinal tract.

Restricted access

Abstract

Escherichia coli K12 (EcK12) is commonly used for gene technology purposes and regarded as a security strain due to its inability to adhere to epithelial cells. The conventional intestinal microbiota composition is critical for physiological colonization resistance against most bacterial species including pathogens. We were therefore interested whether intestinal colonization by a genetically modified EcK12 (W3110) strain carrying a chloramphenicol resistance cassette was facilitated following broad-spectrum antibiotic treatment eradicating the intestinal microbiota or induction of small intestinal inflammation accompanied by distinct microbiota shifts. Whereas conventional C57BL/6 and BALB/c mice had virtually expelled the EcK12 (W3110) strain within the first 3 days upon peroral infection, EcK12 (W3110) could establish within the small and large intestines of gnotobiotic mice generated by quintuple antibiotic treatment. Gnotobiotic mice perorally infected with EcK12 (W3110) plus fecal transplant from conventional donors harbored lower intestinal EcK12 (W3110) loads compared to animals challenged with EcK12 (W3110) alone. Furthermore, EcK12 (W3110) infection of conventional mice after but not before induction of ileitis resulted in stable colonization of ileum and colon by EcK12 (W3110). Taken together, broad-spectrum antibiotic treatment and intestinal inflammation compromise colonization resistance and thus facilitate colonization of the intestinal tract with genetically modified EcK12 security strains.

Restricted access