Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: M. Hales x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Thermogravimetric analysis of synthetic smithsonite and hydrozincite, two secondary minerals of zinc, was used to determine their relative thermal stability. Thermal decomposition of smithsonite occurs at 293°C and hydrozincite at 220°C showing that the carbonate mineral is more stable than the hydroxy-carbonate mineral hydrozincite. Hot stage Raman spectroscopy confirms the decomposition of smithsonite and hydrozincite by 300 and 250°C, respectively. Thermogravimetry shows that a small amount of hydrozincite is formed during the synthesis of smithsonite. No evidence is found for the separate loss of the carbonate and hydroxyl units from hydrozincite.

Restricted access

Abstract  

The precursors of carbonate minerals have the potential to react with greenhouse gases to form many common carbonate minerals. The carbonate bearing minerals, magnesite, calcite, strontianite and witherite, were synthesised and analysed using a combination of thermogravimetry and evolved gas mass spectrometry. The DTG curves show that as both the mass and the size of the metal cationic radii increase, the inherent thermal stability of the carbonate also increases dramatically. It is proposed that this inherent effect is a size stabilisation relationship between that of the carbonate and the metal cation. As the cationic radius increases in size, the radius approaches and in the case of Sr2+ and Ba2+ exceeds that of the overall size of the carbonate anion. The thermal stability of these minerals has implications for the geosequestration of greenhouse gases. The carbonates with the larger cations show significantly greater stability.

Restricted access

Abstract  

TG combined with MS has been used to study the thermal decomposition of a synthetic aurichalcite with varying copper-zinc ratios from 0.1:0.9 to 0.5:0.5. In general, five decomposition steps are observed at 235, 280, 394, 428 and 805°C. The principal mass loss step increases in temperature from 255°C (0.1/0.9) to 300°C (0.5/0.5). MS using ion current curves show that the OH units and carbonate units decompose simultaneously and the two decomposition steps after the main decomposition are attributed to the decomposition of ZnCO3 and CuCO3. A higher temperature decomposition at around 805°C, based upon the ion current curves is assigned to the decomposition of CuO to Cu. The thermal decomposition of aurichalcite offers a method of preparing metal oxides mixed at the molecular level making the thermally activated aurichalcites as suitable for use as catalysts.

Restricted access

Abstract  

The understanding of the thermal stability of magnesium carbonates and the relative metastability of hydrous carbonates including hydromagnesite, artinite, nesquehonite, barringtonite and lansfordite is extremely important to the sequestration process for the removal of atmospheric CO2. The conventional thermal analysis of synthetic nesquehonite proves that dehydration takes place in two steps at 157, 179°C and decarbonation at 416 and 487°C. Controlled rate thermal analysis shows the first dehydration step is isothermal and the second quasi-isothermal at 108 and 145°C. In the CRTA experiment carbon dioxide is evolved at 376°C. CRTA technology offers better resolution and a more detailed interpretation of the decomposition processes of magnesium carbonates such as nesquehonite via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal partial collapse of the nesquehonite structure.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
Veronika Vágvölgyi
,
R. Frost
,
M. Hales
,
A. Locke
,
J. Kristóf
, and
Erzsébet Horváth

Abstract  

The reaction of magnesium minerals such as brucite with CO2 is important in the sequestration of CO2. The study of the thermal stability of hydromagnesite and diagenetically related compounds is of fundamental importance to this sequestration. The understanding of the thermal stability of magnesium carbonates and the relative metastability of hydrous carbonates including hydromagnesite, artinite, nesquehonite, barringtonite and lansfordite is extremely important to the sequestration process for the removal of atmospheric CO2. This work makes a comparison of the dynamic and controlled rate thermal analysis of hydromagnesite and nesquehonite. The dynamic thermal analysis of synthetic hydromagnesite proves that dehydration takes place in two steps at 135 and 184°C, dehydroxylation at 412°C and decarbonation at 474°C. Controlled rate thermal analysis shows the first dehydration step is isothermal and the second quasi-isothermal at 108 and 145°C, respectively. In the CRTA experiment both water and carbon dioxide are evolved in an isothermal decomposition at 376°C. CRTA technology offers better resolution and a more detailed interpretation of the decomposition processes of magnesium carbonates such as nesquehonite via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal partial nesquehonite structure.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
Veronika Vágvölgyi
,
M. Hales
,
W. Martens
,
J. Kristóf
,
Erzsébet Horváth
, and
R. Frost

Abstract  

The understanding of the thermal stability of zinc carbonates and the relative stability of hydrous carbonates including hydrozincite and hydromagnesite is extremely important to the sequestration process for the removal of atmospheric CO2. The hydration-carbonation or hydration-and-carbonation reaction path in the ZnO-CO2-H2O system at ambient temperature and atmospheric CO2 is of environmental significance from the standpoint of carbon balance and the removal of green house gases from the atmosphere. The dynamic thermal analysis of hydrozincite shows a 22.1% mass loss at 247°C. The controlled rate thermal analysis (CRTA) pattern of hydrozincite shows dehydration at 38°C, some dehydroxylation at 170°C and dehydroxylation and decarbonation in a long isothermal step at 190°C. The CRTA pattern of smithsonite shows a long isothermal decomposition with loss of CO2 at 226°C. CRTA technology offers better resolution and a more detailed interpretation of the decomposition processes of zinc carbonate minerals via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. The CRTA technology offers a mechanism for the study of the thermal decomposition and relative stability of minerals such as hydrozincite and smithsonite.

Restricted access