Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: M. Hunger x
  • All content x
Clear All Modify Search

The temperature-programmed desorption (tpd) of the amount of ammonia which is preadsorbed at about 373 K at HZSM-5 zeolites yields a complex desorption curve consisting of two overlapped peaks (Β andγ peak). Parts of the ammonia desorbed can be attributed to SiOHAl groups considering also1H-MAS NMR measurements.

Restricted access

Abstract  

Using temperature-programmed desorption (TPD), we have investigated the desorption behavior after subsequent co-adsorption of methanol and water and after adsorption of their mixtures on a NaZSM-5 zeolite. The course of desorption indicates that a strong mutual displacement of both components occurs. However, on the strongest adsorption sites methanol is preferentially adsorbed, and already the addition of small amounts of methanol leads to a displacement of water. Our results support the idea of a subdivision of the pore space for adsorption of water/methanol mixtures. Above all, the experiments show that in the part of the pore space where both components are adsorbed, different sites are of importance which vary significantly in their interaction strength.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: B. Hunger, M. v. Szombathely, J. Hoffmann, and P. Bräuer

Abstract  

Desorption energy distributions were calculated for temperature-programmed desorption (TPD) of ammonia from H zeolites of different type by means of regularization. This method does not require any limiting assumptions about the distribution function. It could be shown that the desorption energy distributions obtained are nearly independent of the experimental conditions and therefore they should represent a suitable measure for the distribution of the strength of acidic sites. The calculated desorption energy distributions for the ammonia desorption from the isolated bridging SiOHAl groups of H zeolites of different type significantly differ from each other in shape. The increase of the desorption energy of the main range of the distribution functions correlates well with the increase of the average acid strength of the SiOHAl groups with decreasing Al content of the zeolites.

Restricted access

Abstract  

We have investigated the interaction of water with Na+-ion exchanged zeolites of different structures (LTA, FAU, ERI, MOR and MFI) by means of temperature-programmed desorption (TPD). The non-isothermal desorption of water shows, depending on the zeolite type, differently structured desorption profiles. In every case the profiles have, however, two main ranges. Using a regularization method, desorption energy distribution functions have been calculated. The desorption energy distributions between 42–60 kJ mol−1, which can be attributed to a non-specific interaction of water, show two clearly distinguished energy ranges. The water desorption behaviour of this range correlates with the electronegativity of the zeolites and the average charge of the lattice oxygen atoms calculated by means of the electronegativity equalization method (EEM). The part of the desorption energy distributions in the range of 60–90 kJ mol−1, reflecting interactions of water with Na+ cations, shows two more or less pronounced maxima. In agreement with vibrational spectroscopic studies in the far infrared region, it may be concluded that all samples under study possess at least two different cation sites.

Restricted access