Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: M. Malik x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract  

Adsorption of cesium from aqueous solutions on potassium copper nickel hexacyanoferrate(II) (KCNF) has been investigated in batch experiments and optimized as a function of concentration of acids, salts and adsorbate using a radiotracer technique. The results are presented in terms of distribution coefficient, Kd (ml·g–1). The uptake of cesium obeys a Freundlich adsorption isotherm over the concentration range of 3.7 to 37 mmol·l–1 with b values of 0.77, 0.68 and 0.56 at temperatures of 293, 313, 333 K, respectively. The Langmuir adsorption isotherm is followed in the concentration range of 15 to 75 mmol·l–1 in the same temperature range. The values of limiting adsorption concentration (Cm) have been found to be 2.58, 2.44 and 2.32 mmol·g–1. The heat of adsorption was calculated as 26.43 kJ·mol–1. The influence of a number of anions and cations on cesium retention has also been studied. Column experiments have been performed and breakthrough have been obtained under different operating conditions. The low cesium capacity of 1.1 mmol·g–1 has been obtained under dynamic conditions as compared to batch experiments. Desorption of cesium from the column has been achieved (45.4%) by nitric acid solution of 8M concentration at a flow rate of 0.5 ml·min–1.

Restricted access

Abstract  

Potassium copper nickel hexacyanoferrate(II) [KCNF] was prepared by treating potassium nickel hexacyanoferrate(II) with copper nitrate solution in 0.1M HNO3. The resulting material was dried at various temperatures. Chemical analysis, i.r., thermal decomposition and surface property measurements were used to characterize the material. The adsorption of cesium from aqueous solutions on KCNF was investigated and optimized as a function of equilibration time and pH. The material dried at 110°C was found to be fairly stable in dilute acids, salt solutions, high doses of gamma-radiation and at high temperature. It also showed better surface properties and a high value of ion exchange capacity (2.25 mmol·g–1) for cesium.

Restricted access

Abstract  

Transport study for Ti(IV) ions using di-2-ethylhexylphosphoric acid (D2EHPA) (carrier)-CCl4 (diluent) liquid supported membrane in microporous polypropylene hydrophobic film has been performed. The parameters studied are effects of carrier, H2SO4, stripping agent (NH4F) concentrations and temperature variation on flux and permeability coefficients of the metal ion. The optimum concentrations of transport found are 2.04 mol·dm–3 D2EHPA, 1.0 mol·dm–3 H2SO4 in the feed and 1 mol·dm–3 NH4F as stripping agent. The maximum flux and permeability coefficient determined are 1.32·10–5 mol·m–2·s–1 and 8.02·10–12 mol·m–2·s–1, respectively. The transport of this metal ion is increased with increase in temperature. The mechanism of transport appears to be based on coupled counter ion transport phenomenon.

Restricted access

Abstract  

Study of the extraction of W(VI) ions using supported liquid membrane has been carried out. The carrier used for this metal ion transport, is tri-n-octylamine (TOA) dissolved in xylene. The liquid was supported in microporous polypropylene film. The parameters studied are effect of carrier concentration in the membrane, acid concentrations in the feed solution, concentration of stripping agent on transport of W(VI) ions and of temperature on the transport properties of these supported liquid membranes. The optimum conditions of transport for these metal ions determined are, TOA concentration, 0.66 mol·dm–3 (TOA); HF concentration in the feed solution, 0.01 mol·dm–3 and concentration of NaOH used as stripping agent 2.5 mol·dm–3. The maximum flux and permeability determined under optimum conditions are 3.06·10–5 mol·m–2·s–1 and 8.44·10–11 mol· ·m2·s–1 at 25±2°C and 4.21·10–5 mol·m–2·s–1 and 11.55·10–11 mol·m2·s–1 at 65°C, respectively. The diffusion coefficients for the metal ion carrier complex in the membrane have also been determined. Under the optimum conditions the value for the metal ion carrier complex is 0.14·10–11 mol·m2·s–1. Mechanism of transport and the complex formed in the presence of HF have also been discussed. The transport process involves two carrier amine molecules and two protons.

Restricted access

Studying groups through their actions on different sets and algebraic structures has become a useful technique to know about the structure of the groups. The main object of this work is to examine the action of the infinite group \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $H = \langle x,y : x^{2} = y^{4} = 1\rangle$ \end{document} where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $x (z) = \frac{-1}{2z}$ \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $y (z) = \frac{-1}{2(z+1)}$ \end{document} on the real quadratic field \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mathbb{Q}\left(\sqrt{n}\,\right)$ \end{document} and find invariant subsets of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mathbb{Q}\left(\sqrt{n}\,\right)$ \end{document} under the action of the group \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $H$ \end{document} . We also discuss some basic properties of elements of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mathbb{Q}\left(\sqrt{n}\,\right)$ \end{document} under the action of the group H.

Restricted access

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n=k^2 m$ \end{document} , where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $m$ \end{document} is a square-free positive integer and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $k$ \end{document} is any non-zero integer. Then \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mathbb{Q}^{*}\big(\sqrt n\,\big)= \big\{\frac{a+\sqrt n}{c}\: a$ \end{document} , \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\frac{a^{2}-n}{c}$ \end{document} , \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $c\in \mathbb{Z}$ \end{document} , \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\big(a,\frac{a^2 -n}{c},c\big)=1\b\}$ \end{document} is a proper subset of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mathbb{Q}\big(\sqrt m\,\big)$ \end{document} for all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $k$ \end{document} . In this paper we determine, for each non square positive integer \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n$ \end{document} , the ambiguous numbers of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\mathbb{Q}^{*}\big(\sqrt n\,\big)$ \end{document} which is invariant under the action of the modular group \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} ${\rm PSL}\, (2,\mathbb{Z}) =\langle x,y\colon x^2 =y^3 =1\rangle$ \end{document} where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $x\: C'\to C'$ \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $y\: C' \to C'$ \end{document} are the Mobius transformations defined by: \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $x(z)=\frac{-1}{z}$ \end{document} , \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $y(z)=\frac{z-1}{z}$ \end{document} .

Restricted access

Summary  

Kanamycin is an antibiotic used for treatment of infections when penicillin or other less toxic drugs cannot be used. Kanamycin was labeled with technetium-99m pertechnetate using SnCl2 . 2H2O as reducing agent. The labeling efficiency depends on the ligand/reductant ratio, pH, and volume of reaction mixture. Radiochemical purity and stability of 99mTc-Kanamycin was determined by thin layer chromatography. Biodistribution studies of 99mTc-Kanamycin were performed in rats and rabbits. A significantly higher accumulation of 99mTc-Kanamycin was seen at sites of S. aureusinfected animals (rat/rabbit).

Restricted access

Abstract  

Natural radioactivity in the aquatic media has been determined by collecting samples of river, stream and drinking water from the northwestern areas of Pakistan. The concentrations of 40K, 226Ra and 232Th have been measured using a low background gamma-spectrometer and a 10 cm3 planar intrinsic high purity germanium detector. The annual ingestion of these radionuclides, using local consumption rates (average over the whole population) of 0.9 l.d-1, were estimated to be 49.2, 6.2 and 1.1 Bq.y-1 for 40K, 226Ra and 232Th, respectively. A comparison of the annual intakes of these radionuclides, using annual consumption rates of NCRP, ICRP and FBSP shows that the contribution from natural radionuclides to annual intake is slightly greater for NCRP than for ICRP and FBSP consumption rates. However, the estimated values and weighted means of these radionuclides compare well with the world average. The annual effective dose equivalent from drinking water was found to be 3.6.10-6 mSv.y-1 (226Ra), 3.2.10-12 mSv.y-1 (232Th) and 2.1.10-6 mSv.y-1 (40K). These values are lower than those given by NCRP.

Restricted access