Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: M. Maurera x
- Refine by Access: All Content x
Abstract
The pigments used in ceramic applications are of nature predominantly inorganic and they should be thermally stable, insoluble in glazing, resistant to the chemical and physical agents' attacks. This work aimed at the synthesis by the polymeric precursor method of ZrO2-based inorganic pigments, doped with Fe, Ni, Co, Cr and Cu cations. The fired pigments were characterized by thermogravimetry (TG), differential thermal analysis (DTA) and X-ray diffraction (XRD). Among the metals used to zirconium-doping, the best result was achieved with the cations Cu, which presented the monophase pigment, even as 20 mol% of dopant. Up to the temperature of 1000C the pigments presented a good thermal stability.
Abstract
Copper monoxide (CuO) was successfully obtained by microwave-assisted hydrothermal method, using different conditions—in a solution without base, in a solution alkalinized with NaOH or with NH4OH. The powders were analyzed by thermal analysis (TG/DTA), X-ray diffraction (XRD), infrared spectroscopy, UV–Visible spectroscopy, and scanning electronic microscopy. XRD results showed that CuO was obtained with monoclinic structure and without secondary phases. Thermal analysis and infrared spectra indicated the presence of acetate groups on the powder surface. TG curves also showed a mass gain assigned to the Cu(I) oxidation indicating that a reduction possibly occurred during synthesis. The high and broad absorption band in the UV–Vis spectroscopy from 250 to 750 nm indicated the coexistence of Cu(II) and Cu(I), confirming the Cu(II) reduction, inside the CuO lattice. It was also possible to confirm the Cu(II) reduction by a displacement of the Me–O vibration bands observed in the IR spectra at around 500 cm−1.
Abstract
Using the Pechini method, pigments with spinel structure (Zn7Sb2O12)were synthesized by substitution of the cation Zn2+ by Co2+, in compounds with different concentrations of Sb2O3. The doping resulted in CoxZn(7–x)Sb2O12 phases(x=1–7) that were isomorphs to spinel, denominated as samples A and B. After thermal treatment at 400C for 1 h, the powders were characterized by thermogravimetry(TG) and differential thermal analysis (DTA). The results indicate a different behavior whena higher amount of Sb2O3 is used, due to the presence of a secondary phase (ilmenite).
Abstract
With the aim of obtaining materials with applications in pigments, CoxZn7-xSb2O12 spinels were synthesized using the Pechini method. This method consists in the formation of a polymeric net, where the metallic cations are homogeneously distributed. In this work, two types of alcohol (ethyl glycol and ethylene glycol) were used for the synthesis of a zinc antimoniate spinel, CoxZn7-xSb2O12 (x=0-7). The materials were characterized by termogravimetry (TG) and differential thermal analysis (DTA). TG results indicated a decrease in total mass loss when cobalt was added to the solution substituting zinc, for samples prepared using the two different alcohols. Decomposition temperatures, obtained by TG and DTA, presented a decreasing behavior as cobalt was added to the material. In relation to the alcohols, all results indicated a better polymerization of the resin when ethylene glycol was used, being the most indicated one for cation immobilization. X-ray diffraction did not show differences between the two alcohols - both presented the spinel phase (Co, Zn)2.33Sb0.67O4. Samples with higher quantity of cobalt also presented ilmenite phase (Co, Zn)Sb2O6.