Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: M. Mendel x
  • All content x
Clear All Modify Search
Acta Agronomica Hungarica
Authors: S. Šliková, M. Havrlentová, P. Hauptvogel, Ľ. Mendel, E. Gregová, and V. Šudyová

Winter wheat landraces and modern Slovak cultivars were inoculated with the pathogen Fusarium culmorum Sacc. by spraying in May 2008, in plot experiments under natural conditions in Piešťany, Slovakia. The objective was to examine the responses of the tested genotypes to inoculation with F. culmorum and to determine changes in the β-D-glucan content in the kernels. The area under the disease progress curve (AUDPC), Fusarium-damaged kernels (FDK) and the β-D-glucan and deoxynivalenol (DON) contents in the grains were determined using Megazyme and Ridascreen® Fast DON assay kits. Wheat landraces had lower AUDPC and FDK, and accumulated 67.4% less DON than modern cultivars. There were highly significant correlations (P < 0.01) between AUDPC and DON content, between FDK and DON, and between AUDPC and FDK. The correlation between β-D-glucan content and AUDPC was also significant (P < 0.05), but not correlations between β-D-glucan and other traits. The β-D-glucan content in the grain of wheat genotypes artificially inoculated with F. culmorum was lower than in grains without infection. The wheat landraces contained more β-D-glucan than modern cultivars and showed higher resistance to F. culmorum. The three wheat landraces had significantly lower spike and kernel infection compared to modern cultivars and could be used to breed elite cultivars with enhanced Fusarium head blight resistance.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: B. Wierczinski, J. Alstad, K. Eberhardt, J. Kratz, R. Malmbeck, M. Mendel, A. Nähler, J. Omtvedt, G. Skarnemark, N. Trautmann, and N. Wiehl

Abstract  

Fast solvent extraction is a chemical separation method, which can be applied to study exotic nuclides. Since about 1970 the SISAK technique, which is an on-line method based on multi-stage solvent extraction separations, has been successfully used to investigate the nuclear properties of β-decaying nuclides with half-lives down to about one second. During the last decade it has become possible to produce transactinide elements in high enough yields to investigate their chemical properties on a one-atom-at-a-time scale. For this purpose it was necessary to improve and change the detection part of the SISAK system in order to be capable to detect spontaneously fissioning and α-decaying nuclides in a flowing organic solution. This technique is based on liquid scintillation counting with pulse-shape discrimination and pile-up rejection

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: B. Wierczinski, K. Gregorich, B. Kadkhodayan, D. Lee, L. Beauvais, M. Hendricks, C. Kacher, M. Lane, D. Keeney-Shaughnessy, N. Stoyer, D. Strellis, E. Sylwester, P. Wilk, D. Hoffman, R. Malmbeck, G. Skarnemark, J. Alstad, J. Omtvedt, K. Eberhardt, M. Mendel, A. Nähler, and N. Trautmann

Abstract  

Subsecond 224 Pa (T 1/2 = 0.85 s) was produced via the 209 Bi(18 O,3n)224 Pa reaction at the 88 inch cyclotron at the Lawrence Berkeley National Laboratory. After production it was transported via a gas-jet system to the centrifuge system SISAK 3. Following on-line extraction with trioctylamine/scintillation solutions from 1M lactic acid, 224 Pa was detected applying on-line -liquid scintillation counting. Unambiguous identification was achieved using time-correlated --decay chain analysis. This constitutes the first chemical on-line separation and detection of a subsecond -decaying nuclide, 0.85-s 224 Pa with the fast extraction system SISAK 3.

Restricted access