Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: M. Mirmohammadi x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

A novel magnetic molecular-imprinted polymer (MMIP) was used to selectively extract folic acid directly from real samples. Folic acid was used as template molecule, Fe3O4/SiO2-3-triethoxysilyl-propyl-acrylamide as functional monomer, azobisisobutyronitrile as initiation, ethylene glycol dimethacrylate as crosslinker agent, and acrylamide as the secondary monomer in a mixed ethanol-water solvent. The effect of different parameters on the extraction efficiency was studied, and the optimum conditions were established as follows: the concentrations of crosslinking and template were fixed at 0.05 and 0.06 g, absorption percentage was 96.5, pH was adjusted to 8, and extraction time was 8 h with a temperature of 25 °C. By examining the effect of pH, we tried to investigate the effect of the amide groups that present in MMIP and its intermolecular hydrogen interaction with folic acid. After optimising the effective parameters in polymer synthesis and adsorption rate, a magnetic imprinting dispersive solid-phase extraction method combined with fluorescence spectrophotometry at λem = 367 nm (MMIP-DSPE-FL) was constructed for sensitive determination of folic acid in tomato samples. The limit of quantification (LOQ) and limit of detection (LOD) values were 30.00 ± 0.01 μg L−1 and 10.00 ± 0.03 μg L−1, respectively, after the MMIP-DSPE preconcentration. Three tomato samples were analysed to give recoveries in the range of 80.2–81.6%, with relative standard deviation values below 0.6% (n = 3). The prepared MMIP-DSPE showed high selectivity toward folic acid, which could be used six times without changing adsorption capacity. The adsorption isotherm of the folic acid-imprinted polymer pursued the Langmuir model (RL = 0.029), and the kinetics model followed pseudo-first-order (R 2 = 0.9974).

Restricted access

Grain protein content (GPC) in durum wheat is a crucial determinant of pasta quality and as such is an important economic factor. This study was carried out to determine the microsatellite markers (SSRs) as associated with GPC in durum wheat grown under normal and moisture stress conditions. F3 and F4 population derived from 151 F2 individuals developed from a cross between Oste-Gata (drought tolerant) and Massara-1 (drought susceptible) genotypes, were used. The population was evaluated under four environmental conditions (two irrigation regimes in two growing seasons). The results of single marker regression analysis (SMA) revealed that 2, 4 and 10 markers to be associated with GPC, test weight (TW) and 1000 grain weight (TGW), respectively. These markers explained between 4.4 and 21.8% of the phenotypic variation in either environmental condition. The most significant marker observed for GPC was located on 5B chromosome near Xgwm408 under normal conditions and the other marker was observed on 1A, explaining about 15% of phenotypic variance. However, it was not recognized any marker related to GPC under drought stress conditions. Xgwm408 marker was coincident with the markers identified for TW, TGW and components of grain yield under drought stress conditions. In spite of 5B, the other chromosomes such as 2B and 3B were related to quantitative traits like TW and TGW. Composite interval mapping (CIM) identified 4 and 5 putative minor and major QTL for TW and TGW, respectively. Two QTL near Xbarc101 and Xbarc124 markers on 3B and 2B chromosome, explained up to 45.2 and 6% of phenotypic variations of TGW and TW, respectively.

Restricted access