Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: M. Osmanzai x
  • Refine by Access: All Content x
Clear All Modify Search

High yielding, stable wheat (Triticum aestivum L.) cultivars are needed for the diverse environments in West Asia to improve rural livelihoods. This study was conducted to determine the performance of elite wheat breeding lines developed by CIMMYT, to analyze their stability for grain yield across diverse environments, and to identify superior genotypes that could be valuable for varietal release. Genetically diverse 196 advanced breeding lines were evaluated across different sites in Afghanistan. Grain yield, days to heading and plant height were analyzed. Genotypic superiority for grain yield was determined using genotype and genotype × environment (GGE) biplot analysis. The experimental genotypes showed arrays of variation for grain yield in each year, with mean values ranging from 3908 to 7209 kg/ha. A set of 20 experimental genotypes superior to the check based on their high mean yield and stability across environments as assessed by the GGE rank was identified. The most stable high yielding genotypes were HD 2687; Elvia/5/Cndo/R143//Ente/Mexi75/3/AE. sq./4/2*Oci; Quaiu; Whear/Vivitsi//Whear; Kiritati/2*Trch; Waxwing; Munal#1; Whear//Inqalab 91*2/Tukuru and Snb//Cmh79A.955/3*Cno79/3/Attila/4/Chen/A.sq.(Taus)//Bcn/3/2*Kauz. These superior genotypes also had acceptable maturity and plant height. The findings of this study provides information on adaptation of the internationally important wheat genotypes, valuable for wheat improvement program in Afghanistan and its neighbouring countries in West, Central and South Asia.

Restricted access