Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: M. Sajjad x
Clear All Modify Search
Journal of Radioanalytical and Nuclear Chemistry
Authors: R. Lambrecht, M. Sajjad, M. Qureshi and S. Al-Yanbawi

Abstract  

Iodine-124 is produced in high yield by the124Te/d, 2n/124I reaction and >99.5% radionuclidic purity at 48 h post irradiation. The production yield was 0.55±0.06 mCi/Ah. Radiochemical separation and targetry methodology are described.

Restricted access

A panel of 94 diverse hexaploid wheat accessions was used to map quantitative trait loci (QTL) underlying the yield related traits on chromosome 3A. Population structure and kinships were estimated using unlinked SSR markers from all 21 chromosomes. Analysis of variance revealed significant difference among accessions; however, genotype × year interaction was non-significant for majority of yield related traits. A mixed linear model (MLM) approach identified six QTLs for four traits that individually accounted for 10.7 to 17.3% phenotypic variability. All QTLs were consistently observed for both study years. New putative QTLs for the maximum fertile florets per spike and spike length were identified. This report on QTLs for yield related traits on chromosome 3A will extend the existing knowledge and may prove useful in marker-assisted selection (MAS) for development of high yielding cultivars.

Restricted access

The allelic variation for Glu-1, Glu-3 loci and presence of IBL-1RS translocation was determined in 126 spring wheat accessions. The most common alleles at Glu-1 loci were Glu-A1b (59.52%), Glu-B1c (41.26%), and Glu-D1d (57.14%) and at Glu-3 loci were Glu-A3c (56.45%), Glu-B3j (29.36%), and Glu-D3b (76.98%). Modern Pakistani wheat varieties carried superior alleles at Glu-1 and Glu-3 loci for bread-making quality and had no negative influence of secalin protein-synthesized by 1BL-1RS translocation. For LMW-GS, the most common combination was Glu-A3c, Glu-B3j and Glu-D3b. The loci Glu-B1 and Glu-B3 had the highest allelic diversity of Glu-1 and Glu-3 loci, respectively.

Restricted access