Search Results

You are looking at 1 - 10 of 107 items for

  • Author or Editor: M. Santos x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

We study the thermoelastic system in a domain with moving boundary, which was obtained when, instead of the Fourier’s law for the heat flux relation, we followed the linearized model proposed by Coleman and Gurtin [3] and Gurtin and Pipkin [6] about the memory theory of heat conduction. We show the existence, uniqueness and exponential decay rate of global regular solutions.

Restricted access

Abstract  

The present work is part of a broader research program on the energetics of formation of heterocycles, aiming the study of the enthalpic effects of the introduction of different substituents into heterocycles. In this work we present the results of the thermochemical research on sulphur heterocycles of the type substituted thiophenes with different kind of substituents, mainly alkyl, ester, acetyl, carboxamide, acetamide, carbonitrile and carboxaldehyde. The standard (p o=0.1 MPa) molar enthalpies of formation, in the condensed phase, at T=298.15 K, of a large number of substituted thiophenes, were derived from their standard massic energies of combustion, measured by rotating-bomb combustion calorimetry, while the standard molar enthalpies of vaporization or sublimation of those compounds were obtained either by high temperature Calvet Microcalorimetry, or by the temperature dependence of their vapour pressures determined by the Knudsen effusion technique. The standard molar enthalpies of formation, of the studied sulphur heterocycles in the gaseous phase, were then derived. The results are interpreted in terms of structural contributions to the energetics of the substituted thiophenes, the internal consistency of the results is discussed and, whenever appropriate and possible, empirical correlations are suggested for the estimation of standard molar enthalpies of formation, at T=298.15 K, of substituted thiophenes. A Table of enthalpic increments for different group substituents in positions 2 or 3 of the thiophene ring has been established.

Restricted access

Abstract  

The standard (p 0=0.1 MPa) molar enthalpies of formation, in the condensed phase, of nine linear-alkyl substituted thiophenes, six in position 2- and three in position 3-, at T=298.15 K, were derived from the standard massic energies of combustion, in oxygen, to yield CO2(g) and H2SO4·115H2O(aq), measured by rotating-bomb combustion calorimetry. The standard molar enthalpies of vaporization of these compounds were measured by high temperature Calvet Microcalorimetry, so their standard molar enthalpies of formation, in the gaseous phase, were derived. The results are discussed in terms of structural contributions to the energetics of the alkyl-substituted thiophenes, and empirical correlations are suggested for the estimation of the standard molar enthalpies of formation, at T=298.15 K, for 2- and 3-alkyl-substituted thiophenes, both in the condensed and in the gaseous phases.

Restricted access

Abstract  

The standard (p 0=0.1 MPa) molar enthalpy of formation, Δf H 0 m, for crystalline N-phenylphthalimide was derived from its standard molar enthalpy of combustion, in oxygen, at the temperature 298.15 K, measured by static bomb-combustion calorimetry, as –206.03.4 kJ mol–1. The standard molar enthalpy of sublimation, Δg cr H 0 m , at T=298.15 K, was derived, from high temperature Calvet microcalorimetry, as 121.31.0 kJ mol–1. The derived standard molar enthalpy of formation, in the gaseous state, is analysed in terms of enthalpic increments and interpreted in terms of molecular structure.

Restricted access

Abstract  

SnO2-based materials are used as sensors, catalysts and in electro–optical devices. This work aims to synthesize and characterize the SnO2/Sb2O3-based inorganic pigments, obtained by the polymeric precursor method, also known as Pechini method (based on the metallic citrate polymerization by means of ethylene glycol). The precursors were characterized by thermogravimetry (TG) and differential thermal analysis (DTA). After characterization, the precursors were heat-treated at different temperatures and characterized by X-ray diffraction. According to the TG/DTA curves basically two-step mass loss process was observed: the first one is related to the dehydration of the system; and the second one is representative to the combustion of the organic matter. Increase of the heat treatment temperature from 500 to 600C and 700C resulted higher crystallinity of the formed product.

Restricted access

Abstract  

In Brazil, the use of herbal medicines is very popular due to its immense flora, cultural aspects and to the popular belief that herbs, which are of natural origin, are safe and without undesirable side effects. Aside from that public interest in natural therapies, the use of herbal medicines has increased expressively due to the high cost of synthetic medicines. In this study, elemental compositions of herbal medicines from the species Ginseng, Ginkgo biloba, Centella asiatica, Mulberry and Aloe vera supplied by different suppliers were evaluated by neutron activation analysis. The concentrations of As, Ba, Br, Ca, Cl, Co, Cr, Cs, Fe, Hf, K, Mg, Mn, Na, Rb, Sb, Sc, Th, Zn and some lanthanides were determined in these samples. Comparisons made between the results indicated differences in their elemental contents depending on the plant species, origins of the samples and the age of the leaves. The results also showed that the herbal medicines contain elements such as Ca, Co, K, Fe, Mg and Zn known as essential to humans and for treatment and prevention of diseases. Toxic elements such as Hg, Cd and Cu were not detected. Elements As and Sb were detected in some samples but at very low concentrations at the μg kg−1 levels. Herbal medicine results were also compared to literature values. Biological certified reference material was analyzed for quality control of the analytical results.

Restricted access

Abstract  

The standard (p 0=0.1 MPa) molar enthalpies of formation, Δf H m 0, for crystalline phthalimides: phthalimide, N-ethylphthalimide and N-propylphthalimide were derived from the standard molar enthalpies of combustion, in oxygen, at the temperature 298.15 K, measured by static bomb-combustion calorimetry, as, respectively, – (318.01.7), – (350.12.7) and – (377.32.2) kJ mol–1. The standard molar enthalpies of sublimation, Δcr g H m 0, at T=298.15 K were derived by the Clausius-Clapeyron equation, from the temperature dependence of the vapour pressures for phthalimide, as (106.91.2) kJ mol–1 and from high temperature Calvet microcalorimetry for phthalimide, N-ethylphthalimide and N-propylphthalimide as, respectively, (106.31.3), (91.01.2) and (98.21.4) kJ mol–1. The derived standard molar enthalpies of formation, in the gaseous state, are analysed in terms of enthalpic increments and interpreted in terms of molecular structure.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: C. Santos, B. Capistrano, F. Vieira, M. Santos, S. Lima, E. Longo, C. Paskocimas, A. Souza, L. Soledade, and I. Santos

Abstract  

In this work, spinels with the general formula Zn2−xCoxTiO4 were synthesized by the polymeric precursor method and thermally treated at 1,000 °C. The powder precursors were characterized by TG/DTA. A decrease in the DTA peak temperature with the amount of zinc was observed. After the thermal treatment, the characterizations were performed by XRD, IR, colorimetry and UV/VIS spectroscopy. The XRD patterns of all the samples showed the presence of the spinel phase. Infrared spectroscopy showed the presence of ester complexes for Zn2TiO4 after thermal treatment at 500 °C, which disappeared after cobalt addition, indicating that organic material elimination was favored.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: V. A. Cardoso, L. M. Nunes, J. C. O. Santos, I. M. G. Santos, M. M. Conceiçăo, J. R. Santos Jr., and A. G. Souza
Restricted access